Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 51(4): 1034-1044, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34386943

RESUMO

In early studies, northern vegetation response to global warming recognised both increases in biomass/cover and shrinking of species' distributional ranges. Subsequent field measurements focussed on vegetation cover and biomass increases ("greening"), and more recently decreases ("browning"). However, satellite observations show that more than 50% of arctic vegetation has not changed significantly despite rapid warming. While absence of change in remote sensing data does not necessarily mean no ecological change on the ground, the significant proportion of the Arctic that appears to be stable in the face of considerable climate change points to a greater need to understand Arctic ecosystem stability. In this paper, we performed an extensive review of the available literature to seek balances or imbalances between research focussing on "greening", "browning" and "stability/no change". We find that greening studies dominate the literature though two relatively small areas of the Arctic are disproportionately represented for this main change process. Critically, there are too few studies anywhere investigating stability. We highlight the need to understand the mechanisms driving Arctic ecosystem stability, and the potential longer-term consequences of remaining stable in a rapidly changing climate.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Biomassa , Aquecimento Global
2.
Ambio ; 50(11): 1991-2008, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519957

RESUMO

We present climate-dependent changes in the high-mountain forest ecotone, old-growth forests, alpine phytocenoses, and deglaciated forelands in the Aktru glacial basin (Altai Republic, Russia). A number of independent sources (variations in upper treeline altitude, dendrochronological data, analysis of lacustrine sediments and botanical and geographical studies linked with the dynamics of glacial-dammed lakes in the Chuya and Kurai intermountain depressions) suggest Holocene temperatures reached about 4 °C higher than today. Unlike the European Alps, glaciers in the continental Altai Mountains disappeared before forming again. Also, the upper altitudinal limit of mountain forests during the Holocene was greater than in the European Alps. The high variability of mountain ecosystems in southern Siberia suggests their potential instability in a currently changing climate. However, periglacial successions associated with the strong continental climate and glacier retreat represent an area of increasing biodiversity and plant cover. The historical and current sensitivity of the continental mountains to climate variations which exceeds that of the European Alps requires greater understanding, environmental protection, and increased social responsibility for the consequences of anthropogenic contributions to climate change: the isolated Altai areas contribute little to climate changes, but are greatly affected by them.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Camada de Gelo , Florestas , Federação Russa
3.
Ambio ; 50(11): 2104-2127, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586591

RESUMO

A recent multidisciplinary compilation of studies on changes in the Siberian environment details how climate is changing faster than most places on Earth with exceptional warming in the north and increased aridity in the south. Impacts of these changes are rapid permafrost thaw and melt of glaciers, increased flooding, extreme weather events leading to sudden changes in biodiversity, increased forest fires, more insect pest outbreaks, and increased emissions of CO2 and methane. These trends interact with sociological changes leading to land-use change, globalisation of diets, impaired health of Arctic Peoples, and challenges for transport. Local mitigation and adaptation measures are likely to be limited by a range of public perceptions of climate change that vary according to personal background. However, Siberia has the possibility through land surface feedbacks to amplify or suppress climate change impacts at potentially global levels. Based on the diverse studies presented in this Ambio Special Issue, we suggest ways forward for more sustainable environmental research and management.


Assuntos
Ecossistema , Pergelissolo , Regiões Árticas , Mudança Climática , Camada de Gelo , Sibéria
4.
Ambio ; 50(11): 1975-1990, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34244968

RESUMO

Changes in climate, land-use and pollution are having disproportionate impacts on ecosystems and biodiversity of arctic and mountain ecosystems. While these impacts are well-documented for many areas of the Arctic and alpine regions, some isolated and inaccessible mountain areas are poorly studied. Furthermore, even in well-studied regions, assessments of biodiversity and species responses to environmental change are biased towards vascular plants and cryptogams, particularly bryophytes are far less represented. This paper aims to document the environments of the remote and inaccessible Altai-Sayan mountain mires and particularly their bryofloras where threatened species exist and species new to the regional flora are still being found. As these mountain mires are relatively inaccessible, changes in drivers of change and their ecosystem and biodiversity impacts have not been monitored. However, the remoteness of the mires has so far protected them and their species. In this study, we describe the mires, their bryophyte species and the expected impacts of environmental stressors to bring attention to the urgency of documenting change and conserving these pristine ecosystems.


Assuntos
Biodiversidade , Ecossistema , Regiões Árticas , Clima , Mudança Climática , Sibéria
5.
Ambio ; 50(11): 1926-1952, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115347

RESUMO

Biological diversity is the basis for, and an indicator of biosphere integrity. Together with climate change, its loss is one of the two most important planetary boundaries. A halt in biodiversity loss is one of the UN Sustainable Development Goals. Current changes in biodiversity in the vast landmass of Siberia are at an initial stage of inventory, even though the Siberian environment is experiencing rapid climate change, weather extremes and transformation of land use and management. Biodiversity changes affect traditional land use by Indigenous People and multiple ecosystem services with implications for local and national economies. Here we review and analyse a large number of scientific publications, which are little known outside Russia, and we provide insights into Siberian biodiversity issues for the wider international research community. Case studies are presented on biodiversity changes for insect pests, fish, amphibians and reptiles, birds, mammals and steppe vegetation, and we discuss their causes and consequences.


Assuntos
Biodiversidade , Ecossistema , Animais , Aves , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Sibéria
7.
Ambio ; 50(2): 375-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920769

RESUMO

Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Solo , Suécia
8.
Ambio ; 49(6): 1161-1178, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31721066

RESUMO

The Circumpolar North has been changing rapidly within the last decades, and the socioeconomic systems of the Eurasian Arctic and Siberia in particular have displayed the most dramatic changes. Here, anthropogenic drivers of environmental change such as migration and industrialization are added to climate-induced changes in the natural environment such as permafrost thawing and increased frequency of extreme events. Understanding and adapting to both types of changes are important to local and indigenous peoples in the Arctic and for the wider global community due to transboundary connectivity. As local and indigenous peoples, decision-makers and scientists perceive changes and impacts differently and often fail to communicate efficiently to respond to changes adequately, we convened a meeting of the three groups in Salekhard in 2017. The outcomes of the meeting include perceptions of how the three groups each perceive the main issues affecting health and well-being and recommendations for working together better.


Assuntos
Mudança Climática , Povos Indígenas , Regiões Árticas , Meio Ambiente , Humanos , Grupos Populacionais
9.
Sci Rep ; 9(1): 7678, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118471

RESUMO

Treeline shift and tree growth often respond to climatic changes and it is critical to identify and quantify their dynamics. Some regions are particularly sensitive to climate change and the Altai Mountains, located in Central and East Asia, are showing unequivocal signs. The mean annual temperature in the area has increased by 1.3-1.7 °C in the last century. As this mountain range has ancient and protected forests on alpine slopes, we focus on determining the treeline structure and dynamics. We integrated in situ fine-scale allometric data with analyses from dendrochronological samples, high-resolution 3D drone photos and new satellite images to study the dynamics and underlying causal mechanisms of any treeline movement and growth changes in a remote preserved forest at the Aktru Research Station in the Altai Mountain. We show that temperature increase has a negative effect on mountain tree growth. In contrast, only younger trees grow at higher altitudes and we document a relatively fast upward shift of the treeline. During the last 52 years, treeline moved about 150 m upward and the rate of movement accelerated until recently. Before the 1950s, it never shifted over 2150-2200 m a.s.l. We suggest that a continuous upward expansion of the treeline would be at the expense of meadow and shrub species and radically change this high-mountain ecosystem with its endemic flora. This documented treeline shift represents clear evidence of the increased velocity of climate change during the last century.

10.
Sci Total Environ ; 644: 1371-1379, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743849

RESUMO

Several studies have reported significant emission of greenhouse gasses (GHG) from beaver dams, suggesting that ponds created by beavers are a net source of CO2 and CH4. However, most evidence come from studies conducted in North America (on Castor canadensis) without a parallel comparison with the Eurasian beaver's (Castor fiber) impacts and a critical consideration of the importance of the carbon deposition in dam sediments. The most abundant population of the Eurasian beaver lives in Russia, notably within the River Ob watershed in Western Siberia which is the second largest floodplain on Earth. Consequently, we assessed the holistic impact of Eurasian beavers on the multiple carbon pools in water and on other related biogeochemical parameters of the Ob's floodplain streams. We compared dammed and flowing streams in a floodplain of the middle course of the river. We found that beavers in western Siberia increase the stream emission of methane by about 15 times by building their dams. This is similar to what has been documented in North America. A new finding from the present study is that Siberian beavers facilitate 1) nutrient recycling by speeding up the nutrient release from particulate organic matter; and 2) carbon sequestration by increasing the amount of dissolved organic carbon. This carbon becomes in part recalcitrant when buried in sediments and is, therefore, removed from the short-term carbon cycle. These new results should be taken into consideration in river management and provide a further reason for the conservation and management of Eurasian Beavers.


Assuntos
Comportamento Animal , Sequestro de Carbono , Roedores/fisiologia , Animais , Ecossistema , Lagos , Sibéria
11.
Ambio ; 45(5): 516-37, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26984258

RESUMO

Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.


Assuntos
Clima Frio , Ecossistema , Monitoramento Ambiental/métodos , Modelos Teóricos , Neve , Regiões Árticas , Monitoramento Ambiental/economia , Estações do Ano
12.
Glob Chang Biol ; 21(11): 4063-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26111101

RESUMO

Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may have clear impacts, more work is needed to understand their net effect on Arctic ecosystems.


Assuntos
Mudança Climática , Ecossistema , Cadeia Alimentar , Mariposas/fisiologia , Animais , Regiões Árticas , Biodiversidade , Biomassa , Dióxido de Carbono/metabolismo , Herbivoria , Dinâmica Populacional , Estações do Ano , Suécia
13.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120488, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836792

RESUMO

The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Árticas , Atividades Humanas , Plantas , Dinâmica Populacional , Suécia , Temperatura , Raios Ultravioleta
14.
Ambio ; 41 Suppl 3: 178-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864692

RESUMO

This article gives an overview of the studies on the environment surrounding the Abisko Scientific Research Station in Swedish Lapland. The long-term monitoring of the Station on processes related to the climate, and to the physical, biotic, and chemical environmental conditions is particularly addressed. Some variables are recorded since more than 100 years. The obtained data in combination with results from short-term studies and manipulation experiments are important to understand past and future conditions of the ecosystems. This has practical applications for the planning of tourism, transports, reindeer herding, and for societal purposes.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Animais , Regiões Árticas , Aves/fisiologia , Briófitas , Poluentes Ambientais/química , Peixes , Mamíferos , Dinâmica Populacional , Suécia
15.
Ambio ; 41 Suppl 3: 187-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864693

RESUMO

Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.


Assuntos
Ecossistema , Homeostase/fisiologia , Plantas/classificação , Regiões Árticas , Monitoramento Ambiental/métodos , Especificidade da Espécie , Suécia , Fatores de Tempo
16.
Ambio ; 41 Suppl 3: 256-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864699

RESUMO

This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO(2) on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO(2) stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO(2) increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO(2) interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO(2) on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.


Assuntos
Dióxido de Carbono/farmacologia , Ecossistema , Frutas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Raios Ultravioleta , Vaccinium/efeitos dos fármacos , Regiões Árticas , Mudança Climática , Germinação/efeitos dos fármacos , Germinação/fisiologia , Sementes/fisiologia , Suécia , Vaccinium/fisiologia
17.
Ambio ; 41 Suppl 3: 292-302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864702

RESUMO

Recent studies have shown that the complexities of the surface features in mountainous terrain require a re-assessment of climate impacts at the local level. We explored the importance of surface-air-temperature based on a recently published 50-m-gridded dataset, versus soil variables for explaining vegetation distribution in Swedish Lapland using generalised linear models (GLMs). The results demonstrated that the current distribution of the birch forest and snowbed community strongly relied on the surface-air-temperature. However, temperature alone is a poor predictor of many plant communities (wetland, meadow). Because of diminishing sample representation with increasing altitude, the snowbed community was under-sampled at higher altitudes. This results in underestimation of the current distribution of the snowbed community around the mountain summits. The analysis suggests that caution is warranted when applying GLMs at the local level.


Assuntos
Ecossistema , Modelos Biológicos , Desenvolvimento Vegetal , Temperatura , Regiões Árticas , Simulação por Computador , Demografia , Suécia , Árvores
18.
Physiol Plant ; 146(4): 460-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22568724

RESUMO

The Arctic is experiencing the greatest climate change in winter, including increases in freeze-thaw cycles that can result in ice encasement of vegetation. Ice encasement can expose plants to hypoxia and greater temperature extremes, but currently the impacts of icing on plants in the field remain little understood. With this in mind, a unique field manipulation experiment was established in heathland in northern Sweden with ice encasement simulated in early March 2008, 2009 and 2010 until natural thaw each spring. In the following summers we assessed the impacts on flowering, bud phenology, shoot growth and mortality and leaf damage (measured by chlorophyll fluorescence and electrolyte leakage) of the three dominant dwarf shrub species Empetrum nigrum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). Two consecutive winters of icing decreased V. vitis-idaea flowering by 57%, while flowering of V. myrtillus and E. nigrum remained unaffected. Vaccinium myrtillus showed earlier budburst but shoot growth for all species was unchanged. Shoot mortality of V. myrtillus and V. vitis-idaea increased after the first year (by 70 and 165%, respectively) and again for V. myrtillus following the third year (by 67%), while E. nigrum shoot mortality remained unaffected, as were chlorophyll fluorescence and electrolyte leakage in all species. Overall, the sub-arctic heathland was relatively tolerant to icing, but the considerable shoot mortality of V. myrtillus contrasting with the general tolerance of E. nigrum suggests plant community structure in the longer term could change if winters continue to see a greater frequency of icing events.


Assuntos
Ericaceae/fisiologia , Vaccinium myrtillus/crescimento & desenvolvimento , Vaccinium myrtillus/fisiologia , Vaccinium vitis-Idaea/fisiologia , Regiões Árticas , Clorofila/análise , Temperatura Baixa , Eletrólitos/análise , Ericaceae/crescimento & desenvolvimento , Flores/fisiologia , Fluorescência , Gelo , Folhas de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Estações do Ano , Suécia , Vaccinium vitis-Idaea/crescimento & desenvolvimento
19.
Br J Nutr ; 108(8): 1337-40, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22293221

RESUMO

A total of four barren adult female muskoxen (Ovibos moschatus) were used over a period of 2 years for the purpose of the present study. During the first year, the natural changes in appetite (ad libitum intake of standard pelleted reindeer feed) and body mass were determined in two of the animals. During the second year, the effect of reduced food quality on ad libitum food intake was tested in all four animals in July when the appetite had been found to be at a high. We found that the experimentally reduced food quality was not compensated with increased food intake in these large high-Arctic herbivores.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Comportamento Animal , Ingestão de Energia , Comportamento Alimentar , Herbivoria , Fotoperíodo , Estações do Ano , Ração Animal , Animais , Regiões Árticas , Peso Corporal , Dieta , Feminino , Ruminantes
20.
Ecol Lett ; 15(2): 164-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22136670

RESUMO

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.


Assuntos
Adaptação Biológica , Ecossistema , Aquecimento Global , Desenvolvimento Vegetal , Regiões Árticas , Biodiversidade , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...