Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(3): 562-575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200277

RESUMO

Memory B cells (MBCs) are phenotypically and functionally diverse, but their developmental origins remain undefined. Murine MBCs can be divided into subsets by expression of CD80 and PD-L2. Upon re-immunization, CD80/PD-L2 double-negative (DN) MBCs spawn germinal center B cells (GCBCs), whereas CD80/PD-L2 double-positive (DP) MBCs generate plasmablasts but not GCBCs. Using multiple approaches, including generation of an inducible GCBC-lineage reporter mouse, we demonstrate in a T cell-dependent response that DN cells formed independently of the germinal center (GC), whereas DP cells exhibited either extrafollicular (DPEX) or GCBC (DPGC) origins. Chromatin and transcriptional profiling revealed similarity of DN cells with an early memory precursor. Reciprocally, GCBC-derived DP cells shared distinct genomic features with GCBCs, while DPEX cells had hybrid features. Upon restimulation, DPEX cells were more prone to divide, while DPGC cells differentiated toward IgG1+ plasmablasts. Thus, MBC functional diversity is generated through distinct developmental histories, which imprint characteristic epigenetic patterns onto their progeny, thereby programming them for divergent functional responses.


Assuntos
Subpopulações de Linfócitos B , Animais , Camundongos , Células B de Memória , Epigenômica , Linfócitos B , Epigênese Genética
2.
Sci Immunol ; 8(80): eadd1823, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36800413

RESUMO

Both B cell receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to synergistically induce c-MYC and phosphorylated S6 ribosomal protein (p-S6), markers of positive selection. How interleukin-21 (IL-21), a key T follicular helper (TFH)-derived cytokine, affects GCBCs is unclear. Like BCR and CD40 signals, IL-21 receptor (IL-21R) plus CD40 signals also synergize to induce c-MYC and p-S6 in GCBCs. However, IL-21R plus CD40 stimulation differentially affects GCBC fate compared with BCR plus CD40 ligation-engaging unique molecular mechanisms-as revealed by bulk RNA sequencing (RNA-seq), single-cell RNA-seq, and flow cytometry of GCBCs in vitro and in vivo. Whereas both signal pairs induced BLIMP1 in some GCBCs, only the IL-21R/CD40 combination induced IRF4hi/CD138+ cells, indicative of plasma cell differentiation, along with CCR6+/CD38+ memory B cell precursors. These findings reveal a second positive selection pathway in GCBCs, document rewired IL-21R signaling in GCBCs, and link specific TFH- and Ag-derived signals to GCBC differentiation.


Assuntos
Linfócitos B , Centro Germinativo , Receptores de Interleucina-21 , Linfócitos B/metabolismo , Antígenos CD40 , Centro Germinativo/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Receptores de Interleucina-21/metabolismo
3.
Nat Immunol ; 23(10): 1457-1469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36151396

RESUMO

In lupus, Toll-like receptor 7 (TLR7) and TLR9 mediate loss of tolerance to RNA and DNA, respectively. Yet, TLR7 promotes disease, while TLR9 protects from disease, implying differences in signaling. To dissect this 'TLR paradox', we generated two TLR9 point mutants (lacking either ligand (TLR9K51E) or MyD88 (TLR9P915H) binding) in lupus-prone MRL/lpr mice. Ameliorated disease of Tlr9K51E mice compared to Tlr9-/- controls revealed a TLR9 'scaffold' protective function that is ligand and MyD88 independent. Unexpectedly, Tlr9P915H mice were more protected than both Tlr9K51E and Tlr9WT mice, suggesting that TLR9 also possesses ligand-dependent, but MyD88-independent, regulatory signaling and MyD88-mediated proinflammatory signaling. Triple-mixed bone marrow chimeras showed that TLR9-MyD88-independent regulatory roles were B cell intrinsic and restrained differentiation into pathogenic age-associated B cells and plasmablasts. These studies reveal MyD88-independent regulatory roles of TLR9, shedding light on the biology of endosomal TLRs.


Assuntos
Receptor 7 Toll-Like , Receptor Toll-Like 9 , Animais , DNA , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
4.
Nat Immunol ; 23(1): 135-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937918

RESUMO

Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.


Assuntos
Linfócitos B/imunologia , Memória Imunológica/imunologia , Células B de Memória/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Feminino , Citometria de Fluxo/métodos , Humanos , Imunidade Humoral/imunologia , Masculino , Células B de Memória/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo
5.
Nat Immunol ; 20(6): 724-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936494

RESUMO

Regulatory T cells (Treg cells) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. Treg cells subvert beneficial anti-tumor immunity by modulating inhibitory receptor expression on tumor-infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms have remained elusive. Here, we found that the cytokines IL-10 and IL-35 (Ebi3-IL-12α heterodimer) were divergently expressed by Treg cell subpopulations in the tumor microenvironment (TME) and cooperatively promoted intratumoral T cell exhaustion by modulating several inhibitory receptor expression and exhaustion-associated transcriptomic signature of CD8+ TILs. While expression of BLIMP1 (encoded by Prdm1) was a common target, IL-10 and IL-35 differentially affected effector T cell versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for Treg cell-derived IL-10 and IL-35 in promoting BLIMP1-dependent exhaustion of CD8+ TILs that limits effective anti-tumor immunity.


Assuntos
Imunidade Celular , Interleucina-10/metabolismo , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Melanoma Experimental , Camundongos , Neoplasias/patologia , Transdução de Sinais , Transcriptoma
6.
PLoS One ; 10(7): e0133854, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197390

RESUMO

Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαß+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation.


Assuntos
Transplante de Medula Óssea , Intestino Delgado/metabolismo , Linfócitos/citologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linfócitos B/citologia , Células da Medula Óssea/citologia , Citrobacter , Feminino , Doença Enxerto-Hospedeiro , Células-Tronco Hematopoéticas/citologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mielopoese , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Timo/metabolismo , Transplante Homólogo , Vírus do Nilo Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...