Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Transl Med ; 15(680): eadd9012, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696483

RESUMO

Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.


Assuntos
Células Matadoras Naturais , Malária , Criança , Humanos , Antígeno CD56/metabolismo , Plasmodium falciparum , Receptores Fc
2.
J Infect Dis ; 226(4): 566-575, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876164

RESUMO

BACKGROUND: Congenital cytomegalovirus (CMV) infection is the most common infectious cause of birth defects and neurological damage in newborns. Despite a well-established role for natural killer (NK) cells in control of CMV infection in older children and adults, it remains unknown whether fetal NK cells can sense and respond to CMV infection acquired in utero. METHODS: Here, we investigate the impact of congenital CMV infection on the neonatal NK-cell repertoire by assessing the frequency, phenotype, and functional profile of NK cells in cord blood samples from newborns with congenital CMV and from uninfected controls enrolled in a birth cohort of Ugandan mothers and infants. RESULTS: We find that neonatal NK cells from congenitally CMV infected newborns show increased expression of cytotoxic mediators, signs of maturation and activation, and an expansion of mature CD56- NK cells, an NK-cell subset associated with chronic viral infections in adults. Activation was particularly prominent in NK cell subsets expressing the Fcγ receptor CD16, indicating a role for antibody-mediated immunity against CMV in utero. CONCLUSIONS: These findings demonstrate that NK cells can be activated in utero and suggest that NK cells may be an important component of the fetal and infant immune response against CMV. CLINICAL TRIALS REGISTRATION: NCT02793622.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Células Matadoras Naturais , Receptores de IgG/metabolismo
3.
BMJ Open ; 11(7): e053036, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234001

RESUMO

OBJECTIVE: To investigate maternal immunoglobulins' (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterise neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively and passively acquired antibodies in infants. DESIGN: A prospective observational study. SETTING: Public healthcare system in Santa Clara County (California, USA). PARTICIPANTS: Women with symptomatic or asymptomatic SARS-CoV-2 infection during pregnancy and their infants were enrolled between 15 April 2020 and 31 March 2021. OUTCOMES: SARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life. RESULTS: Of 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and 8 with severe-critical symptoms. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56% to 0.73%) and the cord blood was 58% (95% CI 0.49% to 0.66%). IgG levels significantly correlated between the maternal and cord blood (Rs=0.93, p<0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60-180 days before delivery compared with <60 days (1.2 vs 0.6, p<0.0001). Infant IgG seroreversion rates over follow-up periods of 1-4, 5-12, and 13-28 weeks were 8% (4 of 48), 12% (3 of 25), and 38% (5 of 13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to 6 months of age. Two newborns showed seroconversion at 2 weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection. CONCLUSIONS: Maternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than 2 months before delivery. Maternally derived passive immunity may persist in infants up to 6 months of life. Neonates are capable of mounting a strong antibody response to perinatal SARS-CoV-2 infection.

4.
medRxiv ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972953

RESUMO

OBJECTIVE: To investigate maternal immunoglobulins' (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterize neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively- and passively-acquired SARS-CoV-2 antibodies in infants. DESIGN: A prospective observational study. SETTING: A public healthcare system in Santa Clara County (CA, USA). PARTICIPANTS: Women with SARS-CoV-2 infection during pregnancy and their infants were enrolled between April 15, 2020 and March 31, 2021. OUTCOMES: SARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life. RESULTS: Of 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and eight with severe-critical symptoms. Of the 147 newborns, two infants showed seroconversion at two weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56-0.73) and the cord blood was 58% (95% CI 0.49-0.66). IgG levels significantly correlated between the maternal and cord blood (Rs= 0.93, p< 0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60-180 days before delivery compared to <60 days (1.2 vs. 0.6, p=<0.0001). Infant IgG negative conversion rate over follow-up periods of 1-4, 5-12, and 13-28 weeks were 8% (4/48), 12% (3/25), and 38% (5/13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to six months of age. CONCLUSIONS: Maternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than two months before delivery. Maternally-derived passive immunity may protect infants up to six months of life. Neonates mount a strong antibody response to perinatal SARS-CoV-2 infection.

5.
Front Immunol ; 12: 650028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815410

RESUMO

Variation within the HLA locus been shown to play an important role in the susceptibility to and outcomes of numerous infections, but its influence on immunity to P. falciparum malaria is unclear. Increasing evidence indicates that acquired immunity to P. falciparum is mediated in part by the cellular immune response, including NK cells, CD4 and CD8 T cells, and semi-invariant γδ T cells. HLA molecules expressed by these lymphocytes influence the epitopes recognized by P. falciparum-specific T cells, and class I HLA molecules also serve as ligands for inhibitory receptors including KIR. Here we assessed the relationship of HLA class I and II alleles to the risk of P. falciparum infection and symptomatic malaria in a cohort of 892 Ugandan children and adults followed prospectively via both active and passive surveillance. We identified two HLA class I alleles, HLA-B*53:01 and HLA-C*06:02, that were associated with a higher prevalence of P. falciparum infection. Notably, no class I or II HLA alleles were found to be associated with protection from P. falciparum parasitemia or symptomatic malaria. These findings suggest that class I HLA plays a role in the ability to restrict parasitemia, supporting an essential role for the cellular immune response in P. falciparum immunity. Our findings underscore the need for better tools to enable mechanistic studies of the T cell response to P. falciparum at the epitope level and suggest that further study of the role of HLA in regulating pre-erythrocytic stages of the P. falciparum life cycle is warranted.


Assuntos
Antígenos HLA/genética , Antígenos HLA-C/genética , Malária Falciparum/epidemiologia , Parasitemia/epidemiologia , Plasmodium falciparum/imunologia , Adulto , Alelos , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Epitopos de Linfócito T/imunologia , Feminino , Seguimentos , Predisposição Genética para Doença , Técnicas de Genotipagem , Antígenos HLA/metabolismo , Antígenos HLA-C/metabolismo , Humanos , Incidência , Lactente , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Parasitemia/sangue , Parasitemia/genética , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação , Estudos Prospectivos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Uganda/epidemiologia
6.
Front Immunol ; 12: 634749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679787

RESUMO

Childhood vaccines have been the cornerstone tool of public health over the past century. A major barrier to neonatal vaccination is the "immaturity" of the infant immune system and the inefficiency of conventional vaccine approaches at inducing immunity at birth. While much of the literature on fetal and neonatal immunity has focused on the early life propensity toward immune tolerance, recent studies indicate that the fetus is more immunologically capable than previously thought, and can, in some circumstances, mount adaptive B and T cell responses to perinatal pathogens in utero. Although significant hurdles remain before these findings can be translated into vaccines and other protective strategies, they should lend optimism to the prospect that neonatal and even fetal vaccination is achievable. Next steps toward this goal should include efforts to define the conditions for optimal stimulation of infant immune responses, including antigen timing, dose, and route of delivery, as well as antigen presentation pathways and co-stimulatory requirements. A better understanding of these factors will enable optimal deployment of vaccines against malaria and other pathogens to protect infants during their period of greatest vulnerability.


Assuntos
Feto/imunologia , Imunocompetência , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Imunidade Adaptativa , Fatores Etários , Anticorpos Antiprotozoários/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/parasitologia , Feminino , Humanos , Tolerância Imunológica , Imunidade Inata , Esquemas de Imunização , Recém-Nascido , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/transmissão , Troca Materno-Fetal , Gravidez , Vacinação
7.
J Infect Dis ; 224(1): 175-183, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33165540

RESUMO

Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.


Assuntos
Plasmodium falciparum/imunologia , Receptores KIR/fisiologia , Adulto , Criança , Pré-Escolar , Genótipo , Antígenos HLA-C/genética , Humanos , Lactente , Ligantes , Malária Falciparum/etiologia , Malária Falciparum/imunologia , Parasitemia/etiologia , Parasitemia/imunologia , Plasmodium falciparum/isolamento & purificação
8.
PLoS Pathog ; 16(10): e1008997, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085728

RESUMO

Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P. falciparum parasitemia in vivo. Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P.falciparum-infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system.


Assuntos
Malária Falciparum/imunologia , Malária/imunologia , Receptores de IgG/imunologia , Linfócitos T/imunologia , Adulto , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunidade , Lactente , Malária/sangue , Malária/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Receptores de IgG/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T/metabolismo , Uganda/epidemiologia
9.
Nat Biotechnol ; 38(10): 1174-1183, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32855547

RESUMO

Appropriate use and interpretation of serological tests for assessments of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure, infection and potential immunity require accurate data on assay performance. We conducted a head-to-head evaluation of ten point-of-care-style lateral flow assays (LFAs) and two laboratory-based enzyme-linked immunosorbent assays to detect anti-SARS-CoV-2 IgM and IgG antibodies in 5-d time intervals from symptom onset and studied the specificity of each assay in pre-coronavirus disease 2019 specimens. The percent of seropositive individuals increased with time, peaking in the latest time interval tested (>20 d after symptom onset). Test specificity ranged from 84.3% to 100.0% and was predominantly affected by variability in IgM results. LFA specificity could be increased by considering weak bands as negative, but this decreased detection of antibodies (sensitivity) in a subset of SARS-CoV-2 real-time PCR-positive cases. Our results underline the importance of seropositivity threshold determination and reader training for reliable LFA deployment. Although there was no standout serological assay, four tests achieved more than 80% positivity at later time points tested and more than 95% specificity.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Betacoronavirus/genética , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Biotecnologia , COVID-19 , Teste para COVID-19 , Cromatografia de Afinidade , Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Testes Imediatos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
10.
medRxiv ; 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511497

RESUMO

BACKGROUND: Serological tests are crucial tools for assessments of SARS-CoV-2 exposure, infection and potential immunity. Their appropriate use and interpretation require accurate assay performance data. METHOD: We conducted an evaluation of 10 lateral flow assays (LFAs) and two ELISAs to detect anti-SARS-CoV-2 antibodies. The specimen set comprised 128 plasma or serum samples from 79 symptomatic SARS-CoV-2 RT-PCR-positive individuals; 108 pre-COVID-19 negative controls; and 52 recent samples from individuals who underwent respiratory viral testing but were not diagnosed with Coronavirus Disease 2019 (COVID-19). Samples were blinded and LFA results were interpreted by two independent readers, using a standardized intensity scoring system. RESULTS: Among specimens from SARS-CoV-2 RT-PCR-positive individuals, the percent seropositive increased with time interval, peaking at 81.8-100.0% in samples taken >20 days after symptom onset. Test specificity ranged from 84.3-100.0% in pre-COVID-19 specimens. Specificity was higher when weak LFA bands were considered negative, but this decreased sensitivity. IgM detection was more variable than IgG, and detection was highest when IgM and IgG results were combined. Agreement between ELISAs and LFAs ranged from 75.7-94.8%. No consistent cross-reactivity was observed. CONCLUSION: Our evaluation showed heterogeneous assay performance. Reader training is key to reliable LFA performance, and can be tailored for survey goals. Informed use of serology will require evaluations covering the full spectrum of SARS-CoV-2 infections, from asymptomatic and mild infection to severe disease, and later convalescence. Well-designed studies to elucidate the mechanisms and serological correlates of protective immunity will be crucial to guide rational clinical and public health policies.

11.
Nature ; 532(7598): 240-244, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27049947

RESUMO

Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.


Assuntos
Encéfalo/metabolismo , Microglia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Masculino , Camundongos , Neurogênese , Doença de Parkinson/metabolismo , Fagocitose , Proteína S/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , Transdução de Sinais , Nicho de Células-Tronco , Regulação para Cima , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...