Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(9): e1005834, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618691

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely "multiple-acute"). Viral genomes in the "multiple-acute" pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the "multiple-latency" pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual.


Assuntos
Genoma Viral/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Proteína da Leucemia Promielocítica/metabolismo , Latência Viral/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Herpesvirus Humano 1/fisiologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutação , Proteína da Leucemia Promielocítica/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/virologia
2.
PLoS Pathog ; 11(3): e1004730, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760441

RESUMO

The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.


Assuntos
Modelos Animais de Doenças , Herpesvirus Humano 1/fisiologia , Síndromes de Imunodeficiência/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Transferência Adotiva , Animais , Herpes Simples/imunologia , Herpes Simples/virologia , Síndromes de Imunodeficiência/imunologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Virol ; 86(3): 1449-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130536

RESUMO

Herpes simplex virus type 1 (HSV-1) infection induces profound nucleolar modifications at the functional and organizational levels, including nucleolar invasion by several viral proteins. One of these proteins is US11, which exhibits several different functions and displays both cytoplasmic localization and clear nucleolar localization very similar to that of the major multifunctional nucleolar protein nucleolin. To determine whether US11 interacts with nucleolin, we purified US11 protein partners by coimmunoprecipitations using a tagged protein, Flag-US11. From extracts of cells expressing Flag-US11 protein, we copurified a protein of about 100 kDa that was further identified as nucleolin. In vitro studies have demonstrated that nucleolin interacts with US11 and that the C-terminal domain of US11, which is required for US11 nucleolar accumulation, is sufficient for interaction with nucleolin. This association was confirmed in HSV-1-infected cells. We found an increase in the nucleolar accumulation of US11 in nucleolin-depleted cells, thereby revealing that nucleolin could play a role in US11 nucleocytoplasmic trafficking through one-way directional transport out of the nucleolus. Since nucleolin is required for HSV-1 nuclear egress, the interaction of US11 with nucleolin may participate in the outcome of infection.


Assuntos
Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Far-Western Blotting , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno , Nucleolina
4.
J Virol ; 82(10): 4762-73, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18321972

RESUMO

Productive infection by herpes simplex virus type 1 (HSV-1), which occurs in the host cell nucleus, is accompanied by dramatic modifications of the nuclear architecture, including profound alterations of nucleolar morphology. Here, we show that the three most abundant nucleolar proteins--nucleolin, B23, and fibrillarin--are redistributed out of the nucleoli as a consequence of HSV-1 infection. We show that the amount of nucleolin increases progressively during the course of infection. We demonstrate for the first time that a nucleolar protein, i.e., nucleolin, colocalizes with ICP8 in the viral replication compartments, at the time when viral replication is effective, suggesting an involvement of nucleolin in the HSV-1 DNA replication process. At later times of infection, a granular form of nucleolin localizes to the cytoplasm, in structures that display the characteristic features of aggresomes, indicating that this form of nucleolin is very probably destined for degradation. The delocalization of nucleolin from the nucleoli requires the viral ICP4 protein or a factor(s) whose expression involves ICP4. Using small interfering RNA technology, we show that viral replication requires a high level of nucleolin expression, demonstrating for the first time a direct role for a nucleolar protein in herpes simplex virus biology.


Assuntos
Nucléolo Celular/química , Núcleo Celular/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fracionamento Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Células HeLa , Humanos , Proteínas Imediatamente Precoces/metabolismo , Microscopia de Fluorescência , Fosfoproteínas/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas Virais/metabolismo , Nucleolina
5.
FASEB J ; 19(9): 1128-30, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15863396

RESUMO

All the available antiherpetic drugs are directed against viral proteins. Their extensive clinical use has led to the emergence of resistant viral strains. There is a need for the treatment of herpes infections due to resistant strains, especially for immunocompromised patients. To design new kinds of drugs, we have developed a strategy to identify cellular targets. Herpes simplex virus type 1 (HSV-1) infection is concomitant to a repression of most host protein synthesis. However, some cellular proteins continue to be efficiently synthesized. We speculated that some of them could determine the outcome of infection. Since two polyamines, spermidine and spermine, are components of the HSV-1 virions, we investigated whether enzymes involved in their synthesis could be required for viral infection. We show that inhibition of S-adenosyl methionine decarboxylase, a key enzyme of the polyamine metabolic pathway, prevents HSV-1 infection. Inhibition of polyamine synthesis prevents infection of culture cells with HSV-1 laboratory strains as well as clinical isolates that are resistant to the conventional antiviral drugs acyclovir and foscarnet. Our data provide the opportunity to develop molecules with a novel mechanism of action for the treatment of herpes infection.


Assuntos
Adenosilmetionina Descarboxilase/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Mitoguazona/farmacologia , Aciclovir/farmacologia , Adenosilmetionina Descarboxilase/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Foscarnet/farmacologia , Regulação Enzimológica da Expressão Gênica , Herpes Simples/enzimologia , Herpesvirus Humano 1/fisiologia , Humanos , RNA Mensageiro/análise , Espermina/metabolismo , Espermina/farmacologia , Replicação Viral/efeitos dos fármacos
6.
Mol Biol Cell ; 13(11): 4100-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12429849

RESUMO

The notion of a "plurifunctional" nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of approximately 350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes.


Assuntos
Nucléolo Celular/química , Proteínas Nucleares/análise , Proteoma , Nucléolo Celular/ultraestrutura , Biologia Computacional , Bases de Dados de Proteínas , Células HeLa , Humanos , Proteínas Nucleares/classificação , Mapeamento de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...