Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0185327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981531

RESUMO

Fas Apoptosis Inhibitory Molecule (FAIM) is an evolutionarily highly conserved death receptor antagonist, widely expressed and known to participate in physiological and pathological processes. Two FAIM transcript variants have been characterized to date, namely FAIM short (FAIM-S) and FAIM long (FAIM-L). FAIM-S is ubiquitously expressed and serves as an anti-apoptotic protein in the immune system. Furthermore, in neurons, this isoform promotes NGF-induced neurite outgrowth through NF-кB and ERK signaling. In contrast FAIM-L is found only in neurons, where it exerts anti-apoptotic activity against several stimuli. In addition to these two variants, in silico studies point to the existence of two additional isoforms, neither of which have been characterized to date. In this regard, here we confirm the presence of these two additional FAIM isoforms in human fetal brain, fetal and adult testes, and placenta tissues. We named them FAIM-S_2a and FAIM-L_2a since they have the same sequence as FAIM-S and FAIM-L, but include exon 2a. PCR and western blot revealed that FAIM-S_2a shows ubiquitous expression in all the tissues and cellular models tested, while FAIM-L_2a is expressed exclusively in tissues of the nervous system. In addition, we found that, when overexpressed in non-neuronal cells, the splicing factor nSR100 induces the expression of the neuronal isoforms, thus identifying it as responsible for the generation of FAIM-L and FAIM-L_2a. Functionally, FAIM-S_2a and FAIM-L_2a increased neurite outgrowth in response to NGF stimulation in a neuronal model. This observation thus, supports the notion that these two isoforms are involved in neuronal differentiation. Furthermore, subcellular fractionation experiments revealed that, in contrast to FAIM-S and FAIM-L, FAIM-S_2a and FAIM-L_2a are able to localize to the nucleus, where they may have additional functions. In summary, here we report on two novel FAIM isoforms that may have relevant roles in the physiology and pathology of the nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Éxons , Humanos , Conformação de Ácido Nucleico , Células PC12 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estabilidade Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Termodinâmica
2.
J Neurochem ; 139(1): 11-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385439

RESUMO

The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas-induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR-induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand- and tumor necrosis factor alpha-induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X-linked inhibitor of apoptosis protein, a potent anti-apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimer's disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl-xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR-induced apoptosis by inducing the expression of other DR-antagonists such as CFLAR or through the interaction with the DR-adaptor protein Fas-associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and their roles in the physiology and pathology of the nervous system. Even though they share name and inhibit Fas-induced cell death, Fas apoptotic inhibitory molecules (FAIMs) are not structurally related and inhibit apoptosis through completely different mechanisms. In this review, we describe FAIM1, FAIM2, and FAIM3 functions in the nervous system, and their implication in diverse pathologies such as neurodegenerative disease, cancer, or autoimmune diseases.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Morte Celular/genética , Sistema Nervoso , Receptor fas/antagonistas & inibidores , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...