Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 47(29): 5305-14, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18846168

RESUMO

We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we implemented one of the classical methods of off-axis digital holography: the Fourier method. Digital holography allows one to numerically investigate a volume by refocusing the different planes of depth, allowing one to locate the objects under investigation in three dimensions. Furthermore, the phase is directly related to the refractive index, thus to the concentration inside the body. Based on simple symmetry assumptions, we present an original method for determining the concentration profiles inside deformable objects in microconfined flows. Details of the optical and numerical implementation, as well as exemplative experimental results are presented.

2.
Opt Lett ; 33(14): 1626-8, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18628819

RESUMO

We present a numerical technique for extended focused imaging and three-dimensional analysis of a microparticle field observed in a digital holographic microscope working in transmission. The three-dimensional localization of objects is performed using the local focus plane determination method based on the integrated amplitude modulus. We apply the refocusing criterion locally for each pixel, using small overlapping windows, to obtain the depth map and a synthetic image in which all objects are refocused independent from their refocusing distance. A successful application of this technique in the analysis of the microgravity particle flow experiment is presented.

3.
Anal Chem ; 80(13): 4866-75, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18512948

RESUMO

A mini splitterless-split-flow thin fractionation (SPLITT) device has been developed to achieve fast separations of micrometer-sized species. In this device, inlet and outlet steps have replaced the splitters, which are common to conventional SPLITT channels. By elimination of the splitters, it becomes straightforward to reduce channel dimensions while maintaining the classic method of fabrication. Reduced dimension channels allow high axial velocity at relatively low flow rate. These high axial velocities generate an enhancement of inertial lift forces and hydrodynamic shear-induced diffusion. Experiments carried out with particulate and biological species in a mini step-SPLITT channel demonstrate that these hydrodynamic effects yield highly enriched fractions of smaller species from binary mixtures.

4.
Ann N Y Acad Sci ; 1149: 286-91, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120230

RESUMO

Mass production of Ehrlichia ruminantium variants from different regions of sub-Saharan Africa is one of the difficulties that must be overcome in producing a heartwater vaccine. Vaccine productivity can be limited by endogenous induction of interferon (IFN), which inhibits the propagation of Ehrlichia ruminantium (ER) in cell culture. Different kinds of endothelial cells, in which ER multiply efficiently, could be grown in a scalable way in VueLife Teflon bags on Cytodex 3 microcarriers where bead-to-bead transfer of cells occurs. The digital holographic microscope designed at the Université Libre de Bruxelles allows detection of the most appropriate time to harvest intracellular microorganisms for vaccine production.


Assuntos
Vacinas Bacterianas/uso terapêutico , Ehrlichiose/prevenção & controle , Interferons/metabolismo , Animais , Bovinos , Humanos , Células Híbridas
5.
Appl Opt ; 45(5): 864-71, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16512527

RESUMO

We investigate the use of a digital holographic microscope working in partially coherent illumination to study in three dimensions a micrometer-size particle flow. The phenomenon under investigation rapidly varies in such a way that it is necessary to record, for every camera frame, the complete holographic information for further processing. For this purpose, we implement the Fourier-transform method for optical amplitude extraction. The suspension of particles is flowing in a split-flow lateral-transport thin separation cell that is usually used to separate the species by their sizes. Details of the optical implementation are provided. Examples of reconstructed images of different particle sizes are shown, and a particle-velocity measurement technique that is based on the blurred holographic image is exploited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...