Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Environ Health Perspect ; 131(11): 117003, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909725

RESUMO

BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100µM. None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (Ntotal=144). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.


Assuntos
Poluentes Ambientais , Transtornos de Enxaqueca , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canal de Cátion TRPA1/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Xenobióticos , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos de Enxaqueca/metabolismo , Dor , Poluentes Ambientais/toxicidade
3.
FASEB J ; 37(12): e23282, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37994700

RESUMO

Prorenin and the prorenin receptor ((P)RR) are important, yet controversial, members of the renin-angiotensin-aldosterone system. The ((P)RR) is expressed throughout the body, including the vasculature, however, the direct effect of prorenin on arterial contractility is yet to be determined. Within rat mesenteric arteries, immunostaining and proximity ligation assays were used to determine the interacting partners of (P)RR in freshly isolated vascular smooth muscle cells (VSMCs). Wire myography examined the functional effect of prorenin. Simultaneous changes in [Ca2+ ]i and force were recorded in arteries loaded with Fura-2AM. Spontaneously transient outward currents were recorded via perforated whole-cell patch-clamp configuration in freshly isolated VSMCs. We found that the (P)RR is located within a distance of less than 40 nm from the V-ATPase, caveolin-1, ryanodine receptors, and large conductance Ca2+ -activated K+ channels (BKCa ) in VSMCs. [Ca2+ ]i imaging and isometric tension recordings indicate that 1 nM prorenin enhanced α1-adrenoreceptor-mediated contraction, associated with an increased number of Ca2+ waves, independent of voltage-gated Ca2+ channels activation. Incubation of VSMCs with 1 nM prorenin decreased the amplitude and frequency of spontaneously transient outward currents and attenuated BKCa -mediated relaxation. Inhibition of the V-ATPase with 100 nM bafilomycin prevented prorenin-mediated inhibition of BKCa -derived relaxation. Renin (1 nM) had no effect on BKCa -mediated relaxation. In conclusion, prorenin enhances arterial contractility by inhibition of BKCa and increasing intracellular Ca2+ release. It is likely that this effect is mediated through a local shift in pH upon activation of the (P)RR and stimulation of the V-ATPase.


Assuntos
Contração Muscular , Renina , Ratos , Animais , Miócitos de Músculo Liso , Artérias Mesentéricas , Adenosina Trifosfatases
4.
Front Cardiovasc Med ; 10: 1179018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600057

RESUMO

In the past 20 years, genetic variants in SCN5A encoding the cardiac voltage-gated sodium channel Nav1.5 have been linked to a range of inherited cardiac arrhythmias: variants resulting in loss-of-function of Nav1.5 have been linked to sick sinus syndrome, atrial stand still, atrial fibrillation (AF) impaired pulse generation, progressive and non-progressive conduction defects, the Brugada Syndrome (BrS), and sudden cardiac death. SCN5A variants causing increased sodium current during the plateau phase of the cardiac action potential is associated with Long QT Syndrome type 3 (LQTS3), Torsade de Pointes ventricular tachycardia and SCD. Recently, gain-of-function variants have been linked to complex electrical phenotypes, such as the Multifocal Ectopic Purkinje-related Premature Contractions (MEPPC) syndrome. MEPPC is a rare condition characterized by a high burden of premature atrial contractions (PACs) and/or premature ventricular contractions (PVCs) often accompanied by dilated cardiomyopathy (DCM). MEPPC is inherited in an autosomal dominant fashion with an almost complete penetrance. The onset is often in childhood. The link between SCN5A variants, MEPPC and DCM is currently not well understood, but amino acid substitutions resulting in gain-of-function of Nav1.5 or introduction of gating pore currents potentially play an important role. DCM patients with a MEPPC phenotype respond relatively poorly to standard heart failure medical therapy and catheter ablation as the PVCs originate from all parts of the fascicular Purkinje fiber network. Class 1c sodium channel inhibitors, notably flecainide, have a remarkable positive effect on the ectopic burden and the associated cardiomyopathy. This highlights the importance of genetic screening of DCM patients to identify patients with SCN5A variants associated with MEPPC. Here we review the MEPPC phenotype, MEPPC-SCN5A associated variants, and pathogenesis as well as treatment options.

5.
Proc Natl Acad Sci U S A ; 120(13): e2217084120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943876

RESUMO

More than half of all extant metazoan species on earth are insects. The evolutionary success of insects is linked with their ability to osmoregulate, suggesting that they have evolved unique physiological mechanisms to maintain water balance. In beetles (Coleoptera)-the largest group of insects-a specialized rectal ("cryptonephridial") complex has evolved that recovers water from the rectum destined for excretion and recycles it back to the body. However, the molecular mechanisms underpinning the remarkable water-conserving functions of this system are unknown. Here, we introduce a transcriptomic resource, BeetleAtlas.org, for the exceptionally desiccation-tolerant red flour beetle Tribolium castaneum, and demonstrate its utility by identifying a cation/H+ antiporter (NHA1) that is enriched and functionally significant in the Tribolium rectal complex. NHA1 localizes exclusively to a specialized cell type, the leptophragmata, in the distal region of the Malpighian tubules associated with the rectal complex. Computational modeling and electrophysiological characterization in Xenopus oocytes show that NHA1 acts as an electroneutral K+/H+ antiporter. Furthermore, genetic silencing of Nha1 dramatically increases excretory water loss and reduces organismal survival during desiccation stress, implying that NHA1 activity is essential for maintaining systemic water balance. Finally, we show that Tiptop, a conserved transcription factor, regulates NHA1 expression in leptophragmata and controls leptophragmata maturation, illuminating the developmental mechanism that establishes the functions of this cell. Together, our work provides insights into the molecular architecture underpinning the function of one of the most powerful water-conserving mechanisms in nature, the beetle rectal complex.


Assuntos
Tribolium , Animais , Tribolium/genética , Tribolium/metabolismo , Prótons , Antiporters/metabolismo , Reto/metabolismo , Água/metabolismo
6.
Acta Physiol (Oxf) ; 237(3): e13925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606541

RESUMO

BACKGROUND: The Purkinje fibers convey the electrical impulses at much higher speed than the working myocardial cells. Thus, the distribution of the Purkinje network is of paramount importance for the timing and coordination of ventricular activation. The Purkinje fibers are found in the subendocardium of all species of mammals, but some mammals also possess an intramural Purkinje fiber network that provides for relatively instantaneous, burst-like activation of the entire ventricular wall, and gives rise to an rS configuration in lead II of the ECG. AIM: To relate the topography of the horse heart and the distribution and histology of the conduction system to the pattern of ventricular activation as a mechanism for the unique electrical axis of the equine heart. METHODS: The morphology and distribution of the cardiac conduction system was determined by histochemistry. The electrical activity was measured using ECG in the Einthoven and orthogonal configuration. RESULTS: The long axis of the equine heart is close to vertical. Outside the nodal regions the conduction system consisted of Purkinje fibers connected by connexin 43 and long, slender parallel running transitional cells. The Purkinje fiber network extended deep into the ventricular walls. ECGs recorded in an orthogonal configuration revealed a mean electrical axis pointing in a cranial-to-left direction indicating ventricular activation in an apex-to-base direction. CONCLUSION: The direction of the mean electrical axis in the equine heart is determined by the architecture of the intramural Purkinje network, rather than being a reflection of ventricular mass.


Assuntos
Ventrículos do Coração , Ramos Subendocárdicos , Cavalos , Animais , Ramos Subendocárdicos/fisiologia , Eletrocardiografia , Miócitos Cardíacos , Mamíferos
7.
Europace ; 24(12): 2015-2027, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726875

RESUMO

AIMS: Variants in SCN5A encoding Nav1.5 are associated with cardiac arrhythmias. We aimed to determine the mechanism by which c.638G>A in SCNA5 resulting in p.Gly213Asp (G213D) in Nav1.5 altered Na+ channel function and how flecainide corrected the defect in a family with multifocal ectopic Purkinje-related premature contractions (MEPPC)-like syndrome. METHODS AND RESULTS: Five patients carrying the G213D variant were treated with flecainide. Gating pore currents were evaluated in Xenopus laevis oocytes. The 638G>A SCN5A variant was introduced to human-induced pluripotent stem cell (hiPSC) by CRISPR-Cas9 gene editing and subsequently differentiated to cardiomyocytes (hiPSC-CM). Action potentials and sodium currents were measured in the absence and presence of flecainide. Ca2+ transients were measured by confocal microscopy. The five patients exhibited premature atrial and ventricular contractions which were suppressed by flecainide treatment. G213D induced gating pore current at potentials negative to -50 mV. Voltage-clamp analysis in hiPSC-CM revealed the activation threshold of INa was shifted in the hyperpolarizing direction resulting in a larger INa window current. The G213D hiPSC-CMs had faster beating rates compared with wild-type and frequently showed Ca2+ waves and alternans. Flecainide applied to G213D hiPSC-CMs decreased window current by shifting the steady-state inactivation curve and slowed the beating rate. CONCLUSION: The G213D variant in Nav1.5 induced gating pore currents and increased window current. The changes in INa resulted in a faster beating rate and Ca2+ transient dysfunction. Flecainide decreased window current and inhibited INa, which is likely responsible for the therapeutic effectiveness of flecainide in MEPPC patients carrying the G213D variant.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Potenciais de Ação/fisiologia , Arritmias Cardíacas/genética , Flecainida/farmacologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Sódio/metabolismo
9.
Biomed Mater ; 17(4)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35483352

RESUMO

Preclinical biomedical and pharmaceutical research on disease causes, drug targets, and side effects increasingly relies onin vitromodels of human tissue. 3D printing offers unique opportunities for generating models of superior physiological accuracy, as well as for automating their fabrication. Towards these goals, we here describe a simple and scalable methodology for generating physiologically relevant models of skeletal muscle. Our approach relies on dual-material micro-extrusion of two types of gelatin hydrogel into patterned soft substrates with locally alternating stiffness. We identify minimally complex patterns capable of guiding the large-scale self-assembly of aligned, extended, and contractile human and murine skeletal myotubes. Interestingly, we find high-resolution patterning is not required, as even patterns with feature sizes of several hundred micrometers is sufficient. Consequently, the procedure is rapid and compatible with any low-cost extrusion-based 3D printer. The generated myotubes easily span several millimeters, and various myotube patterns can be generated in a predictable and reproducible manner. The compliant nature and adjustable thickness of the hydrogel substrates, serves to enable extended culture of contractile myotubes. The method is further readily compatible with standard cell-culturing platforms as well as commercially available electrodes for electrically induced exercise and monitoring of the myotubes.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Animais , Humanos , Hidrogéis , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético , Engenharia Tecidual/métodos
10.
J Equine Vet Sci ; 104: 103694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416991

RESUMO

Exercise-associated sudden deaths (EASDs) are deaths occurring unexpectedly during or immediately after exercise. Sudden cardiac death (SCD) is one cause of EASD. Cardiac arrhythmias caused by genetic variants have been linked to SCD in humans. We hypothesize that genetic variants may be associated with SCD in animals, including horses. Genetic variants are transmitted to offspring and their frequency might increase within a family. Therefore, the frequency of such variants might increase with the inbreeding factor. Higher inbreeding could have a negative impact on racing performance. Pedigree data and career earnings from racehorses diagnosed with SCD between 2002 and 2017 were compared using non-parametric tests with 1) control horses that died due to catastrophic musculoskeletal injuries and 2) horses that raced during the same period without reported problems. Diagnosis of SCD was based on necropsy reports, including macroscopic and microscopic examinations. Death was registered in the study period for 61 horses. Eleven of these horses were excluded due to missing autopsy reports. In 25 cases, the diagnosis remained unknown and death was possibly caused by cardiac arrhythmia, in two cases cardiac disease was identified, in seven cases a rupture of a major vessel had occurred. In addition, 16 horses died or were euthanized due to severe musculoskeletal injuries. No significant differences in inbreeding coefficients or in career earnings were found between the groups or between horses with EASD compared with other horses racing during the same period. The study provides no evidence for increased inbreeding factor in Finnish racehorses with SCD.


Assuntos
Morte Súbita Cardíaca , Doenças dos Cavalos , Condicionamento Físico Animal , Animais , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/veterinária , Eutanásia Animal , Finlândia/epidemiologia , Doenças dos Cavalos/genética , Cavalos , Humanos , Linhagem
11.
Curr Res Struct Biol ; 3: 51-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235486

RESUMO

Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles. Lastly, we present a road map to achieve the most efficient expression of prokaryotic IMPs in our yeast platform. Our findings demonstrate the great potential of S. cerevisiae as host for high-throughput recombinant overproduction of bacterial and archaeal IMPs for downstream biophysical characterization.

12.
PLoS Biol ; 19(4): e3001144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872299

RESUMO

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Assuntos
Miocárdio/metabolismo , Proteoma/metabolismo , Animais , Coração/fisiologia , Ventrículos do Coração/química , Ventrículos do Coração/metabolismo , Cavalos , Humanos , Camundongos , Modelos Animais , Miocárdio/química , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Ratos , Especificidade da Espécie , Suínos , Peixe-Zebra
13.
Am J Vet Res ; 82(3): 207-217, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33629897

RESUMO

OBJECTIVE: To determine whether administration of trimethoprim-sulfadiazine (TMS), detomidine (DET), or TMS plus DET would be associated with changes in ECG repolarization parameters in horses. ANIMALS: 9 healthy adult horses. PROCEDURES: Each horse received 4 treatments in a blinded, randomized, crossover study design as follows: TMS, 16 to 24 mg/kg, IV; DET, 0.015 to 0.02 mg/kg, IV; TMS plus DET; and saline (0.9% NaCl) solution. Surface ECG traces were obtained over 24 hours, and repolarization parameters were measured at predefined time points after each treatment and compared with a 2-way ANOVA for repeated measures. RESULTS: Heart rate-corrected QT intervals (QTc) were significantly increased after administration of DET (mean ± SD difference in QTc, 36.57 ± 23.07 milliseconds; increase of 7%) and TMS plus DET (44.96 ± 29.16 milliseconds; increase of 9%), compared with baseline (before treatment) values and values after administration of saline solution. Saline solution and TMS alone did not affect QTc. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of DET or TMS plus DET was associated with a significant and possibly clinically relevant prolongation of QTc, with prolongation of 7% to 9%, a range that is considered as a risk factor for the development of cardiac arrhythmias in people. Results were unexpected because DET is considered to be a safe sedative for horses.


Assuntos
Sulfadiazina , Trimetoprima , Animais , Estudos Cross-Over , Eletrocardiografia/veterinária , Frequência Cardíaca , Cavalos , Imidazóis , Trimetoprima/efeitos adversos
14.
PLoS Pathog ; 17(2): e1008982, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544769

RESUMO

In the absence of efficient alternative strategies, the control of parasitic nematodes, impacting human and animal health, mainly relies on the use of broad-spectrum anthelmintic compounds. Unfortunately, most of these drugs have a limited single-dose efficacy against infections caused by the whipworm, Trichuris. These infections are of both human and veterinary importance. However, in contrast to a wide range of parasitic nematode species, the narrow-spectrum anthelmintic oxantel has a high efficacy on Trichuris spp. Despite this knowledge, the molecular target(s) of oxantel within Trichuris is still unknown. In the distantly related pig roundworm, Ascaris suum, oxantel has a small, but significant effect on the recombinant homomeric Nicotine-sensitive ionotropic acetylcholine receptor (N-AChR) made up of five ACR-16 subunits. Therefore, we hypothesized that in whipworms, a putative homolog of an ACR-16 subunit, can form a functional oxantel-sensitive receptor. Using the pig whipworm T. suis as a model, we identified and cloned a novel ACR-16-like subunit and successfully expressed the corresponding homomeric channel in Xenopus laevis oocytes. Electrophysiological experiments revealed this receptor to have distinctive pharmacological properties with oxantel acting as a full agonist, hence we refer to the receptor as an O-AChR subtype. Pyrantel activated this novel O-AChR subtype moderately, whereas classic nicotinic agonists surprisingly resulted in only minor responses. We observed that the expression of the ACR-16-like subunit in the free-living nematode Caenorhabditis elegans conferred an increased sensitivity to oxantel of recombinant worms. We demonstrated that the novel Tsu-ACR-16-like receptor is indeed a target for oxantel, although other receptors may be involved. These finding brings new insight into the understanding of the high sensitivity of whipworms to oxantel, and highlights the importance of the discovery of additional distinct receptor subunit types within Trichuris that can be used as screening tools to evaluate the effect of new synthetic or natural anthelmintic compounds.


Assuntos
Antinematódeos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Pirantel/análogos & derivados , Receptores Colinérgicos/química , Tricuríase/tratamento farmacológico , Trichuris/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Feminino , Proteínas de Helminto/classificação , Proteínas de Helminto/metabolismo , Masculino , Pirantel/farmacologia , Receptores Colinérgicos/classificação , Receptores Colinérgicos/metabolismo , Suínos , Tricuríase/metabolismo , Tricuríase/parasitologia , Xenopus laevis/metabolismo
15.
PLoS Biol ; 17(4): e3000218, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022181

RESUMO

ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue ("fast gate") known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-K and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-ß-synthase (CBS) domains and the intracellular vestibule ("slow gating"). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1-related diseases.


Assuntos
Canais de Cloreto/ultraestrutura , Sequência de Aminoácidos , Membrana Celular/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Ativação do Canal Iônico , Cinética , Potenciais da Membrana , Modelos Moleculares
16.
Front Cell Neurosci ; 13: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983973

RESUMO

Infusion of pituitary adenylate cyclase activating peptide-38 (PACAP-38) provokes migraine attacks in migraineurs and headache in non-migraineurs. Adverse events like long-lasting flushing and heat sensation can be terminated with oral antihistamine treatment, indicating the involvement of mast cell activation after PACAP-infusion. Degranulation of rat peritoneal mast cells was provoked by several isoforms of PACAP via previously unknown receptor pharmacology. The effect might thus be mediated either via specific splice variants of the PAC1-receptor or via an unknown receptor for PACAP-38. In the present study, we characterize degranulation of rat meningeal mast cells in response to PACAP-receptor ligands. Furthermore, we investigate if PACAP-38-induced mast cell degranulation is mediated via PAC1-receptor splice variants and/or via the orphan Mas-related G-protein coupled member B3 (MrgB3)-receptor. To address this, the pharmacological effect of different PACAP isoforms on meningeal mast cell degranulation was investigated in the hemisected skull model after toluidine blue staining followed by microscopic quantification. Presence of mRNA encoding PAC1-receptor splice variants and the MrgB3-receptor in rat mast cells was investigated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis. The effect of PACAP isoforms on PAC1- and MrgB3-receptor-expressing Xenopus laevis oocytes were performed by two-electrode voltage-clamp (TEVC) electrophysiology. PACAP-38 is a more potent mast cell degranulating agent than Pituitary Adenylate Cyclase Activating Peptide-27 (PACAP-27) in the meninges. Presence of mRNA encoding the PAC1-receptor and its different splice variants could not be detected in peritoneal mast cells by RT-PCR, whereas the orphan MrgB3-receptor, recently suggested to be a mediator of basic secretagogues-induced mast cell degranulation, was widely present. In PAC1-receptor-expressing Xenopus laevis oocytes both PACAP-38, PACAP-27 and the specific PAC1-receptor agonist maxadilan were equipotent, however, only PACAP-38 showed a significant degranulatory effect on mast cells. We confirmed Pituitary Adenylate Cyclase Activating Peptide(6-38) [PACAP(6-38)] to be a PAC1-receptor antagonist, and we demonstrated that it is a potent mast cell degranulator and have an agonistic effect on MrgB3-receptors expressed in oocytes. The present study provides evidence that PACAP-induced mast cell degranulation in rat is mediated through a putative new PACAP-receptor with the order of potency being: PACAP-38 = PACAP(6-38) > > PACAP-27 = maxadilan. The results suggest that the observed responses are mediated via the orphan MrgB3-receptor.

17.
Cells ; 8(2)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754715

RESUMO

(1) Background: Human transient receptor potential (TRP) channels constitute a large family of ion-conducting membrane proteins that allow the sensation of environmental cues. As the dysfunction of TRP channels contributes to the pathogenesis of many widespread diseases, including cardiac disorders, these proteins also represent important pharmacological targets. TRP channels are typically produced using expensive and laborious mammalian or insect cell-based systems. (2) Methods: We demonstrate an alternative platform exploiting the yeast Saccharomyces cerevisiae capable of delivering high yields of functional human TRP channels. We produce 11 full-length human TRP members originating from four different subfamilies, purify a selected subset of these to a high homogeneity and confirm retained functionality using TRPM8 as a model target. (3) Results: Our findings demonstrate the potential of the described production system for future functional, structural and pharmacological studies of human TRP channels.


Assuntos
Proteínas Recombinantes/biossíntese , Saccharomyces cerevisiae/metabolismo , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/isolamento & purificação , Animais , Detergentes/farmacologia , Humanos , Filogenia , Solubilidade , Canais de Potencial de Receptor Transitório/química
18.
Stem Cells Dev ; 28(9): 608-619, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30755084

RESUMO

Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) are used to study cardiogenesis and mechanisms of heart disease, and are being used in methods for toxiological screening of drugs. The phenotype of stem-cell-derived CMs should ideally resemble native CMs. Here, we compare embryonic/fetal CMs with hESC-derived CMs according to function and morphology. CM clusters were obtained from human embryonic/fetal hearts from elective terminated pregnancies before gestational week 12, and separated into atrial and ventricular tissues. Specific markers for embryonic CMs and primary cilia were visualized using immunofluorescence microscopy analysis. Contracting human embryonic cardiomyocyte (hECM) clusters morphologically and phenotypically resemble CMs in the embryonic/fetal heart. In addition, the contracting hECM clusters expressed primary cilia similar to that of cells in the embryonic/fetal heart. The electrophysiological characteristics of atrial and ventricular CMs were established by recording action potentials (APs) using sharp electrodes. In contrast to ventricular APs, atrial APs displayed a marked early repolarization followed by a plateau phase. hESC-CMs displayed a continuum of AP shapes. In all embryonic/fetal clusters, both atrial and ventricular, AP duration was prolonged by exposure to the KV11.1 channel inhibitor dofetilide (50 nM); however, the prolongation was not significant, possibly due to the relatively small number of experiments. This study provides novel information on APs and functional characteristics of atrial and ventricular CMs in first trimester hearts, and demonstrates that Kv11.1 channels play a functional role already at these early stages. These results provide information needed to validate methods being developed on the basis of in vitro-derived CMs from either hESC or iPSC, and although there was a good correlation between the morphology of the two types of CMs, differences in electrophysiological characteristics exist.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/citologia , Feto/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Miócitos Cardíacos/citologia , Esferoides Celulares/citologia , Potenciais de Ação/fisiologia , Adulto , Biomarcadores/análise , Biomarcadores/metabolismo , Separação Celular/métodos , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Gravidez , Cultura Primária de Células/métodos , Adulto Jovem
20.
Res Vet Sci ; 123: 239-246, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685649

RESUMO

BACKGROUND: The voltage-gated K+-channel Kv11.1 has a central role in cardiac repolarization. Blockage of Kv11.1 has been linked to severe cardiovascular side effects, such as acquired long QT syndrome (aLQTS), torsade de pointes arrhythmia and sudden cardiac death (SCD). Kv11.1 is susceptible to unspecific drug interactions due to the presence of two aromatic amino acids residing in the inner vestibule of the pore. These aromatic residues are also present in the equine orthologue of Kv11.1. This suggests that equine Kv11.1 may also be prone to high-affinity block by a range of different chemical entities, which potentially could cause severe cardiac side effects and SCD in horses. AIM: To screen a series of commonly used drugs in equine medicine for interaction with Kv11.1. METHODS: High-throughput screening of selected compounds on human Kv11.1 expressed in a mammalian cell line was performed using an automated patch clamp system, the SyncroPatch 384PE (Nanion Technologies, Munich, Germany). Results were validated on equine Kv11.1 expressed in CHO-K1 cells by manual patch clamp. RESULTS: Acepromazine maleat (IC50 = 0.5 µM) trimethoprim (IC50 = 100 µM), diphenhydramine hydrochloride (IC50 = 2 µM) and cyproheptadine hydrochloride (IC50 = 1.84 µM) inhibited equine Kv11.1 current at clinically relevant drug concentrations. CONCLUSION: The results suggest that drug interaction with Kv11.1 can occur in horses and that some drugs potentially may induce repolarization disorders in horses.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Cavalos , Preparações Farmacêuticas/classificação , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...