Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264990

RESUMO

The best agro-industrial performance presented by a crop genotype in one environment may not be reproduced in another owing to complex edaphoclimatic variations. Therefore, breeding programs are constantly attempting to obtain, through artificial hybridization, novel genotypes with high adaptability and stability potential. The objective of this study was to analyze genetic divergence in sugarcane based on the genotypic values of adaptability and stability. A total of 11 sugarcane genotypes were analyzed for eight agro-industrial traits. The genotypic values of the traits were determined using mixed model methodology, and the genetic divergence based on phenotypic and genotypic values was measured using the Mahalanobis distance. The distance matrices were correlated using the Mantel test, and the genotypes were grouped using the Tocher method. Genetic divergence is more accurate when based on genotypic values free of genotype-environment interactions and will differ from genetic divergence based on phenotypic data, changing the genotype allocations in the groups. The above methodology can be applied to assess genetic divergence to obtain novel sugarcane genotypes with higher productivity that are adapted to intensive agricultural systems using diverse technologies. This methodology can also be tested in other crops to increase accuracy in selecting the parents to be crossed.


Assuntos
Variação Genética , Deriva Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Saccharum
2.
Appl Microbiol Biotechnol ; 105(4): 1585-1600, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33538877

RESUMO

The yeast Dekkera bruxellensis is well-known for its adaptation to industrial ethanol fermentation processes, which can be further improved if nitrate is present in the substrate. To date, the assimilation of nitrate has been considered inefficient because of the apparent energy cost imposed on cell metabolism. Recent research, however, has shown that nitrate promotes growth rate and ethanol yield when oxygen is absent from the environment. Given this, the present work aimed to identify the biological mechanisms behind this physiological behaviour. Proteomic analyses comparing four contrasting growth conditions gave some clues on how nitrate could be used as primary nitrogen source by D. bruxellensis GDB 248 (URM 8346) cells in anaerobiosis. The superior anaerobic growth in nitrate seems to be a consequence of increased cell metabolism (glycolytic pathway, production of ATP and NADPH and anaplerotic reactions providing metabolic intermediates) regulated by balanced activation of TORC1 and NCR de-repression mechanisms. On the other hand, the poor growth observed in aerobiosis is likely due to an oxidative stress triggered by nitrate when oxygen is present. These results represent a milestone regarding the knowledge about nitrate metabolism and might be explored for future use of D. bruxellensis as an industrial yeast. KEY POINTS: • Nitrate can be regarded as preferential nitrogen source for D. bruxellensis. • Oxidative stress limits the growth of D. bruxellensis in nitrate in aerobiosis. • Nitrate is a nutrient for novel industrial bioprocesses using D. bruxellensis.


Assuntos
Dekkera , Brettanomyces , Fermentação , Nitratos , Proteômica
3.
Funct Plant Biol ; 44(11): 1124-1133, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480638

RESUMO

The vegetative desiccation tolerance of Tripogon spicatus (Nees) Ekman was confirmed by its ability to recover the physiological functionality of intact plants previously subjected to extreme dehydration. Photosynthesis became undetectable when leaf relative water content (RWCleaf) achieved ~60%, whereas photochemical variables showed a partial decrease. Until the minimum RWCleaf of 6.41%, total chl decreased by 9%, and total carotenoids increased by 29%. Superoxide dismutase (SOD) activity decreased by 57%, on average, during dehydration, but catalase (CAT) and peroxidase (APX) activities showed no significant differences throughout the experiment. Malondialdehyde (MDA) content increased by 151%, total leaf and root amino acids decreased by 62% and 77%, respectively, whereas leaf and root proline decreased by 40% and 61%, respectively, until complete desiccation. After rehydration, leaves completely recovered turgidity and total chl contents. Carotenoids and MDA remained high, whereas SOD was 60% lower than the measured average measured before dehydration. With the exception of root amino acid contents, total amino acids and proline concentrations recovered completely. Gas exchange and photochemical variables remained substantially higher 4 days after rehydration, compared with the control. Besides increasing MDA, the overall physiological results showed that membrane functionality was preserved, leading to the vegetative desiccation tolerance of T. spicatus during the dehydration-rehydration cycle.

4.
Genet. mol. biol ; 30(3,suppl): 848-856, 2007. graf, tab
Artigo em Inglês | LILACS | ID: lil-467263

RESUMO

Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs) and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark) or in reproductive organs (flowers and fruits). Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC).

5.
Curr Genet ; 46(6): 366-73, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15526204

RESUMO

The complete nucleotide sequence of the chloroplast genome of sugarcane (Saccharum officinarum) was determined. It consists of 141,182 base-pairs (bp), containing a pair of inverted repeat regions (IR(A), IR(B)) of 22,794 bp each. The IR(A) and IR(B) sequences separate a small single copy region (12,546 bp) and a large single copy (83,048 bp) region. The gene content and relative arrangement of the 116 identified genes (82 peptide-encoding genes, four ribosomal RNA genes, 30 tRNA genes), with the 16 ycf genes, are highly similar to maize. Editing events, defined as C-to-U transitions in the mRNA sequences, were comparable with those observed in maize, rice and wheat. The conservation of gene organization and mRNA editing suggests a common ancestor for the sugarcane and maize plastomes. These data provide the basis for functional analysis of plastid genes and plastid metabolism within the Poaceae. The sugarcane chloroplast DNA sequence is available at GenBank under accession NC005878.


Assuntos
Cloroplastos/genética , DNA de Cloroplastos/genética , Genes de Plantas , Genoma de Planta , Saccharum/genética , Sequência de Bases , Variação Genética , Dados de Sequência Molecular , Plastídeos/metabolismo , Edição de RNA , RNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...