Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257616

RESUMO

With the growing interest in metal additive manufacturing using laser powder bed fusion (LPBF), there is a need for advanced in-situ nondestructive evaluation (NDE) methods that can dynamically monitor manufacturing process-related variations, that can be used as a feedback mechanism to further improve the manufacturing process, leading to parts with improved microstructural properties and mechanical properties. Current NDE techniques either lack sensitivity beyond build layer, are costly or time-consuming, or are not compatible for in-situ integration. In this research, we develop an electrical resistance diagnostic for in-situ monitoring of powder fused regions during laser powder bed fusion printing. The technique relies on injecting current into the build plate and detecting voltage differences from conductive variations during printing using a simple, cheap four-point electrode array directly connected to the build plate. A computational model will be utilized to determine sensitivities of the approach, and preliminary experiments will be performed during the printing process to test the overall approach.

2.
Ultramicroscopy ; 253: 113810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37429066

RESUMO

The rapid collection and indexing of electron diffraction patterns as produced via electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural determination, as well as additional property-determining strain and dislocation density information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant on the noise of the collected electron diffraction patterns, which is often convoluted by sample preparation and data collection parameters. EBSD acquisition is sensitive to many factors and thus can result in low confidence index (CI), poor image quality (IQ), and improper minimization of fit, which can result in noisy datasets and misrepresent the microstructure. In an attempt to enable both higher speed EBSD data collection and enable greater orientation fit accuracy with noisy datasets, an image denoising autoencoder was implemented to improve pattern quality. We show that EBSD data processed through the autoencoder results in a higher CI, IQ, and a more accurate degree of fit. In addition, using denoised datasets in HR-EBSD cross correlative strain analysis can result in reduced phantom strain from erroneous calculations due to the increased indexing accuracy and improved correspondence between collected and simulated patterns.

3.
Rev Sci Instrum ; 93(4): 043702, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489885

RESUMO

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM. In this article, a laboratory scale system designed to mimic LPBF process conditions while operating at a synchrotron facility is described. The system is implemented with process accurate atmospheric conditions, including an air knife for active vapor plume removal. Significantly, the chamber also incorporates a diagnostic sensor suite that monitors emitted optical, acoustic, and electronic signals during laser processing with coincident x-ray imaging. The addition of the sensor suite enables validation of these industrially compatible single point sensors by detecting pore formation and spatter events and directly correlating the events with changes in the detected signal. Experiments in the Ti-6Al-4V alloy performed at the Stanford Synchrotron Radiation Lightsource using the system are detailed with sufficient sampling rates to probe melt pool dynamics. X-ray imaging captures melt pool dynamics at frame rates of 20 kHz with a 2 µm pixel resolution, and the coincident diagnostic sensor data are recorded at 470 kHz. This work shows that the current system enables the in situ detection of defects during the LPBF process and permits direct correlation of diagnostic signatures at the exact time of defect formation.


Assuntos
Lasers , Síncrotrons , Pós , Radiografia , Raios X
4.
Science ; 368(6491): 660-665, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381724

RESUMO

State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser-powder-melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.

5.
Sci Rep ; 10(1): 1981, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029753

RESUMO

Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the ß-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority ß-Ti phase with increased strain at slower cooling rates. The α-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the ß-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials.

6.
Nat Commun ; 10(1): 1987, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040270

RESUMO

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

7.
Rev Sci Instrum ; 89(5): 055101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864819

RESUMO

In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 µm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 µm area. We also discuss the utility of these measurements for model validation and process improvement.

8.
Nat Mater ; 17(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29115290

RESUMO

Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

9.
Inorg Chem ; 56(23): 14584-14595, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160701

RESUMO

Previously synthesized only as powders, single crystals of the RE2Ru3Ge5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have now been obtained from molten In. These materials crystallize with the U2Co3Si5-type structure in orthorhombic space group Ibam with lattice parameters a ≈ 10.00-9.77 Å (La-Tb), b ≈ 12.51-12.35 Å, and c ≈ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe5 and RuGe6 units, as well as Ge-Ge zigzag chains. This structure type and those of the other five (Sc2Fe3Si5, Lu2Co3Si5, Y2Rh3Sn5, Yb2Ir3Ge5, and Yb2Pt3Sn5) to compose the RE2T3X5 phase space are discussed in depth. For the three compounds with RE = Nd, Gd, Tb, multiple magnetic transitions and metamagnetic behavior are observed. Electronic band structure calculations performed on La2Ru3Ge5 indicate that these materials have a negative band gap and are semimetallic in nature.

10.
J Am Chem Soc ; 139(11): 4130-4143, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28206753

RESUMO

A new polymorph of the RE2Ru3Ge5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc2Fe3Si5-type structure, having lattice parameters a = 11.020(2) Šand c = 5.853(1) Šfor RE = Pr, a = 10.982(2) Šand c = 5.777(1) Šfor RE = Sm, and a = 10.927(2) Šand c = 5.697(1) Šfor RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge density wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm2Ru3Ge5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the one-dimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (TCDW) observed in the Pr and Sm analogues are ∼200 and ∼175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.


Assuntos
Germânio/química , Elementos da Série dos Lantanídeos/química , Teoria Quântica , Rutênio/química , Fenômenos Eletromagnéticos
11.
Inorg Chem ; 55(23): 12477-12481, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934417

RESUMO

Large single crystals of SrIr4In2Ge4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of Eg = 0.25(3) eV. It crystallizes in the tetragonal EuIr4In2Ge4 structure type with space group I4̅2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr4In2Ge4 and the parent structure Ca3Ir4Ge4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.

12.
Inorg Chem ; 55(6): 3128-35, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26949815

RESUMO

We report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr2In8 and SrIr2In8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe2Al8 structure type, which is sometimes also referred to as the CaCo2Al8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for M = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr2In8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr2In8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr2In8 relative to that in SrIr2In8, with estimated values of γ = 118(3) and 18.0(2) mJ mol(-1) K(-2), respectively.

13.
Inorg Chem ; 54(17): 8794-9, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26270774

RESUMO

This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

14.
Angew Chem Int Ed Engl ; 54(32): 9186-91, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26111038

RESUMO

EuIr4In2Ge4 is a new intermetallic semiconductor that adopts a non-centrosymmetric structure in the tetragonal I4̄2m space group with unit cell parameters a=6.9016(5) Šand c=8.7153(9) Å. The compound features an indirect optical band gap E(g)=0.26(2) eV, and electronic-structure calculations show that the energy gap originates primarily from hybridization of the Ir 5d orbitals, with small contributions from the Ge 4p and In 5p orbitals. The strong spin-orbit coupling arising from the Ir atoms, and the lack of inversion symmetry leads to significant spin splitting, which is described by the Dresselhaus term, at both the conduction- and valence-band edges. The magnetic Eu(2+) ions present in the structure, which do not play a role in gap formation, order antiferromagnetically at 2.5 K.

15.
Inorg Chem ; 52(17): 9931-40, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23931551

RESUMO

Four novel intermetallic silicides, RE5Mn4Al(23-x)Si(x) (x = 7.9(9), RE = Ho, Er, Yb) and Er44Mn55(AlSi)237, have been prepared by reaction in aluminum flux. Three RE5Mn4Al(23-x)Si(x) compounds crystallize in the tetragonal space group P4/mmm with the relatively rare Gd5Mg5Fe4Al(18-x)Si(x) structure type. Refinement of single-crystal X-ray diffraction data yielded unit cell parameters of a = 11.3834(9)-11.4171(10) Å and c = 4.0297(2)-4.0575(4) Å with volumes ranging from 522.41(5) to 528.90(8) Å(3). Structure refinements on single-crystal diffraction data show that Er44Mn55(AlSi)237 adopts a new cubic structure type in the space group Pm3n with a very large unit cell edge of a = 21.815(3) Å. This new structure is best understood when viewed as two sets of nested polyhedra centered on a main group atom and a manganese atom. These polyhedral clusters describe the majority of the atomic positions in the structure and form a perovskite-type network. We also report the electrical and magnetic properties of the title compounds. All compounds except the Ho analogue behave as normal paramagnetic metals without any observed magnetic transitions above 5 K and exhibit antiferromagnetic correlations deduced from the value of their Curie constants. Ho5Mn4Al(23-x)Si(x) exhibits a ferromagnetic transition at 20 K and an additional metamagnetic transition at 10 K, suggesting independent ordering temperatures for two distinct magnetic sublattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...