Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38189368

RESUMO

The oceans harbour a myriad of unknown micro-organisms that remain unstudied because of a failure to establish the right growth conditions under laboratory conditions. To overcome this limitation, an isolation effort inspired by the iChip was performed using marine sediments from Memória beach, Portugal. A novel strain, PMIC_1C1BT, was obtained and subjected to a polyphasic study. Cells of strain PMIC_1C1BT were Gram-positive, rod-shaped, divided by binary fission and formed colonies that were shiny light-yellow. Based on its full 16S rRNA gene sequence, strain PMIC_1C1BT was phylogenetically associated to the genus Microbacterium and its closest relatives were Microbacterium aurum KACC 15219T (98.55 %), Microbacterium diaminobutyricum RZ63T (98.48 %) and Microbacterium hatanonis JCM 14558T (98.13 %). Strain PMIC_1C1BT had a genome size of 2 761 607 bp with 67.71 mol% of G+C content and 2582 coding sequences, which is lower than the genus average. Strain PMIC_1C1BT grew from 15 to 30 °C, optimally at 25 °C, at pH 6.0 to 11.0, optimally between pH 6.0 and 8.0, and from 0 to 5 % (w/v) NaCl, optimally between 2.0 and 3.0 %. It grew with casamino acids, glutamine, methionine, N-acetylglucosamine, sodium nitrate, tryptophan, urea and valine as sole nitrogen sources, and arabinose and cellobiose as sole carbon sources. The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. Genome mining revealed the presence of four biosynthetic gene clusters (BGCs) with low similarities to other known BCGs. Based on the polyphasic data, strain PMIC_1C1BT is proposed to represent a novel species, for which the name Microbacterium memoriense sp. nov. (=CECT 30366T=LMG 32350T) is proposed.


Assuntos
Actinomycetales , Microbacterium , Portugal , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias
2.
Biotechnol Biofuels Bioprod ; 16(1): 188, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042839

RESUMO

BACKGROUND: Biogas and biomethane production from the on-farm anaerobic digestion (AD) of animal manure and agri-food wastes could play a key role in transforming Europe's energy system by mitigating its dependence on fossil fuels and tackling the climate crisis. Although ammonia is essential for microbial growth, it inhibits the AD process if present in high concentrations, especially under its free form, thus leading to economic losses. In this study, which includes both metabolic and microbial monitoring, we tested a strategy to restore substrate conversion to methane in AD reactors facing critical free ammonia intoxication. RESULTS: The AD process of three mesophilic semi-continuous 100L reactors critically intoxicated by free ammonia (> 3.5 g_N L-1; inhibited hydrolysis and heterotrophic acetogenesis; interrupted methanogenesis) was restored by applying a strategy that included reducing pH using acetic acid, washing out total ammonia with water, re-inoculation with active microbial flora and progressively re-introducing sugar beet pulp as a feed substrate. After 5 weeks, two reactors restarted to hydrolyse the pulp and produced CH4 from the methylotrophic methanogenesis pathway. The acetoclastic pathway remained inhibited due to the transient dominance of a strictly methylotrophic methanogen (Candidatus Methanoplasma genus) to the detriment of Methanosarcina. Concomitantly, the third reactor, in which Methanosarcina remained dominant, produced CH4 from the acetoclastic pathway but faced hydrolysis inhibition. After 11 weeks, the hydrolysis, the acetoclastic pathway and possibly the hydrogenotrophic pathway were functional in all reactors. The methylotrophic pathway was no longer favoured. Although syntrophic propionate oxidation remained suboptimal, the final pulp to CH4 conversion ratio (0.41 ± 0.10 LN_CH4 g_VS-1) was analogous to the pulp biochemical methane potential (0.38 ± 0.03 LN_CH4 g_VS-1). CONCLUSIONS: Despite an extreme free ammonia intoxication, the proposed process recovery strategy allowed CH4 production to be restored in three intoxicated reactors within 8 weeks, a period during which re-inoculation appeared to be crucial to sustain the process. Introducing acetic acid allowed substantial CH4 production during the recovery period. Furthermore, the initial pH reduction promoted ammonium capture in the slurry, which could allow the field application of the effluents produced by full-scale digesters recovering from ammonia intoxication.

3.
Antonie Van Leeuwenhoek ; 116(11): 1209-1225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737556

RESUMO

A bacterial strain was isolated from a brackish water sample of Tagus river, Alcochete, Portugal and was designated TO1_6T. It forms light pink colonies on M13 medium supplemented with N-acetylglucosamine. Cells are pear-shaped to spherical, form rosettes and divide by budding. Strain TO1_6T presents a mesophilic and neutrophilic profile, with optimum growth at 20 to 25 °C and pH 7.0 to 7.5, and vitamin supplementation is not required to promote its growth. The genome of the novel isolate is 7.77 Mbp in size and has a DNA G + C content of 56.3%. Based on its 16S rRNA gene sequence, this strain is affiliated with the phylum Planctomycetota. Further taxonomic characterization using additional phylogenetic markers, namely rpoB gene sequence (encoding the ß-subunit of the DNA-dependent RNA polymerase), as well as Percentage of conserved proteins, average nucleotide identity and average amino acid identity, suggest the affiliation of strain TO1_6T to the genus Stieleria, a recently described taxon in the family Pirellulaceae, order Pirellulales and class Planctomycetia. Based on the genotypic, phylogenetic and physiological characterization, we here describe a new species represented by the type strain TO1_6T (= CECT 30432T, = LMG 32465T), for which the name Stieleria tagensis sp. nov. is proposed.


Assuntos
Ácidos Graxos , Rios , Rios/microbiologia , Ácidos Graxos/análise , Fosfolipídeos/análise , Planctomicetos , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Portugal , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana
4.
Artigo em Inglês | MEDLINE | ID: mdl-37486346

RESUMO

An isolation effort focused on sporogenous Actinomycetota from the Tagus estuary in Alcochete, Portugal, yielded a novel actinomycetal strain, designated MTZ3.1T, which was subjected to a polyphasic taxonomic study. MTZ3.1T is characterised by morphology typical of members of the genus Streptomyces, with light beige coloured substrate mycelium, which does not release pigments to the culture medium and with helicoidal aerial hyphae that differentiate into spores with a light-grey colour. The phylogeny of MTZ3.1T, based on the full 16S rRNA gene sequence, indicated that its closest relatives were Streptomyces alkaliterrae OF1T (98.48 %), Streptomyces chumphonensis KK1-2T (98.41 %), Streptomyces albofaciens JCM 4342T (98.34 %), Streoptomyces paromomycinus NBRC 15454T (98.34 %) and Streptomyces chrestomyceticus NRBC 13444T (98.34 %). Moreover, average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) are below the species cutoff values (ANI 67.70 and 68.35 %, AAI 77.06 and 76.71 % and dDDH 22.10 and 21.50 % for S. alkaliterrae OF1T and S. chumphonensis KK1-2T, respectively). Whole genome sequencing revealed that MTZ3.1T has a genome of 5 644 485 bp with a DNA G+C content of 71.29 mol% and 5044 coding sequences. Physiologically, MTZ3.1T is strictly aerobic, able to grow at 15-37 °C, optimally at 25 °C and between pH5 and 8 and showed high salinity tolerance, growing with 0-10 %(w/v) NaCl. Major cellular fatty acids are C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. Furthermore, it was able to utilise a variety of nitrogen and carbon sources. Antimicrobial screening indicated that MTZ3.1T has potent anti-Staphylococcus aureus activity. On the basis of the polyphasic data, MTZ3.1T is proposed to represent a novel species, Streptomyces meridianus sp. nov. (= CECT 30416T = DSM 114037T=LMG 32463T).


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Portugal , Estuários , Análise de Sequência de DNA , Filogenia , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácido Diaminopimélico/química , Águas Salinas , Fosfolipídeos/química
5.
BMC Genomics ; 24(1): 115, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922761

RESUMO

BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts. RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin. CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.


Assuntos
Isópteros , Animais , Isópteros/genética , Solo , Filogenia , RNA Ribossômico 16S/genética , Celulose/metabolismo
6.
Microorganisms ; 10(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363743

RESUMO

The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.

7.
Syst Appl Microbiol ; 45(6): 126360, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166947

RESUMO

Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species. 16S rRNA gene accession number: GenBank = OK001858. Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.


Assuntos
Estuários , Rios , RNA Ribossômico 16S/genética , Rios/microbiologia , Portugal , DNA Bacteriano/genética , DNA Bacteriano/química , Filogenia , Análise de Sequência de DNA , Ácidos Graxos/análise , Técnicas de Tipagem Bacteriana
8.
FEMS Microbiol Rev ; 46(2)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875063

RESUMO

The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.


Assuntos
Euryarchaeota , Propionatos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Euryarchaeota/metabolismo , Oxirredução , Propionatos/metabolismo
9.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34453168

RESUMO

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data.


Assuntos
Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos , Resistência Microbiana a Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
10.
Microbiome ; 8(1): 96, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576253

RESUMO

BACKGROUND: Termites are among the most successful insect lineages on the globe and are responsible for providing numerous ecosystem services. They mainly feed on wood and other plant material at different stages of humification. Lignocellulose is often a principal component of such plant diet, and termites largely rely on their symbiotic microbiota and associated enzymes to decompose their food efficiently. While lower termites and their gut flagellates were given larger scientific attention in the past, the gut lignocellulolytic bacteria of higher termites remain less explored. Therefore, in this study, we investigated the structure and function of gut prokaryotic microbiomes from 11 higher termite genera representative of Syntermitinae, Apicotermitinae, Termitidae and Nasutitermitinae subfamilies, broadly grouped into plant fibre- and soil-feeding termite categories. RESULTS: Despite the different compositional structures of the studied termite gut microbiomes, reflecting well the diet and host lineage, we observed a surprisingly high functional congruency between gut metatranscriptomes from both feeding groups. The abundance of transcripts encoding for carbohydrate active enzymes as well as expression and diversity profiles of assigned glycoside hydrolase families were also similar between plant fibre- and soil-feeding termites. Yet, dietary imprints highlighted subtle metabolic differences specific to each feeding category. Roughly, 0.18% of de novo re-constructed gene transcripts were shared between the different termite gut microbiomes, making each termite gut a unique reservoir of genes encoding for potentially industrially applicable enzymes, e.g. relevant to biomass degradation. Taken together, we demonstrated the functional equivalence in microbial populations across different termite hosts. CONCLUSIONS: Our results provide valuable insight into the bacterial component of the termite gut system and significantly expand the inventory of termite prokaryotic genes participating in the deconstruction of plant biomass. Video Abstract.


Assuntos
Biomassa , Microbioma Gastrointestinal , Isópteros/metabolismo , Isópteros/microbiologia , Plantas/metabolismo , Solo , Animais , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Isópteros/genética , Lignina/metabolismo , Simbiose
11.
Commun Biol ; 3(1): 275, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483294

RESUMO

Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.


Assuntos
Bactérias/enzimologia , Microbioma Gastrointestinal , Expressão Gênica , Isópteros/fisiologia , Poaceae/química , Adaptação Biológica , Animais , Dieta , Digestão , Trato Gastrointestinal/fisiologia
12.
Oecologia ; 191(3): 541-553, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31571038

RESUMO

Termites are eusocial insects having evolved several feeding, nesting and reproductive strategies. Among them, inquiline termites live in a nest built by other termite species: some of them do not forage outside the nest, but feed on food stored by the host or on the nest material itself. In this study, we characterized some dimensions of the ecological niche of Cavitermes tuberosus (Termitidae: Termitinae), a broad-spectrum inquiline termite with a large neotropical distribution, to explain its ecological success. We used an integrative framework combining ecological measures (physico-chemical parameters, stable isotopic ratios of N and C) and Illumina MiSeq sequencing of 16S rRNA gene to identify bacterial communities and to analyse termites as well as the material from nests constructed by different termite hosts (the builders). Our results show that (1) nests inhabited by C. tuberosus display a different physico-chemical composition when compared to nests inhabited by its builder alone; (2) stable isotopic ratios suggest that C. tuberosus feeds on already processed, more humified, nest organic matter; and (3) the gut microbiomes cluster by termite species, with the one of C. tuberosus being much more diverse and highly similar to the one of its main host, Labiotermes labralis. These results support the hypothesis that C. tuberosus is a generalist nest feeder adapted to colonize nests built by various builders, and explain its ecological success.


Assuntos
Isópteros , Microbiota , Animais , Comportamento Alimentar , Isótopos , RNA Ribossômico 16S
13.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152018

RESUMO

Increased hydrolysis of easily digestible biomass may lead to acidosis of anaerobic reactors and decreased methane production. Previously, it was shown that the structure of microbial communities changed during acidosis; however, once the conditions are back to optimal, biogas (initially CO2) production quickly restarts. This suggests the retention of the community functional redundancy during the process failure. In this study, with the use of metagenomics and downstream bioinformatics analyses, we characterize the carbohydrate hydrolytic potential of the microbial community, with a special focus on acidosis. To that purpose, carbohydrate-active enzymes were identified, and to further link the community hydrolytic potential with key microbes, bacterial genomes were reconstructed. In addition, we characterized biochemically the specificity and activity of selected enzymes, thus verifying the accuracy of the in silico predictions. The results confirm the retention of the community hydrolytic potential during acidosis and indicate Bacteroidetes to be largely involved in biomass degradation. Bacteroidetes showed higher diversity and genomic content of carbohydrate hydrolytic enzymes that might favor the dominance of this phylum over other bacteria in some anaerobic reactors. The combination of bioinformatic analyses and activity tests enabled us to propose a model of acetylated glucomannan degradation by BacteroidetesIMPORTANCE The enzymatic hydrolysis of lignocellulosic biomass is mainly driven by the action of carbohydrate-active enzymes. By characterizing the gene profiles at the different stages of the anaerobic digestion experiment, we showed that the microbiome retains its hydrolytic functional redundancy even during severe acidosis, despite significant changes in taxonomic composition. By analyzing reconstructed bacterial genomes, we demonstrate that Bacteroidetes hydrolytic gene diversity likely favors the abundance of this phylum in some anaerobic digestion systems. Further, we observe genetic redundancy within the Bacteroidetes group, which accounts for the preserved hydrolytic potential during acidosis. This work also uncovers new polysaccharide utilization loci involved in the deconstruction of various biomasses and proposes the model of acetylated glucomannan degradation by Bacteroidetes Acetylated glucomannan-enriched biomass is a common substrate for many industries, including pulp and paper production. Using naturally evolved cocktails of enzymes for biomass pretreatment could be an interesting alternative to the commonly used chemical pretreatments.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Metagenoma , Microbiota , Anaerobiose , Bacteroidetes/metabolismo , Biomassa , Metabolismo dos Carboidratos , Concentração de Íons de Hidrogênio , Hidrólise
14.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30551145

RESUMO

Wolbachia has deeply shaped the ecology and evolution of many arthropods, and interactions between the two partners are a continuum ranging from parasitism to mutualism. Non-dispersing queens of the termite Cavitermes tuberosus are parthenogenetically produced through gamete duplication, a mode of ploidy restoration generally induced by Wolbachia. These queens display a bacteriome-like structure in the anterior part of the mesenteron. Our study explores the possibility of a nutritional mutualistic, rather than a parasitic, association between Wolbachia and C. tuberosus. We found a unique strain (wCtub), nested in the supergroup F, in 28 nests collected in French Guiana, the island of Trinidad and the state of Paraíba, Brazil (over 3500 km). wCtub infects individuals regardless of caste, sex or reproductive (sexual versus parthenogenetic) origin. qPCR assays reveal that Wolbachia densities are higher in the bacteriome-like structure and in the surrounding gut compared to other somatic tissues. High-throughput 16S rRNA gene amplicon sequencing reveals that Wolbachia represents over 97% of bacterial reads present in the bacteriome structure. BLAST analyses of 16S rRNA, bioA (a gene of the biosynthetic pathway of B vitamins) and five multilocus sequence typing genes indicated that wCtub shares 99% identity with wCle, an obligate nutritional mutualist of the bedbug Cimex lectularius.


Assuntos
Microbioma Gastrointestinal/genética , Isópteros/microbiologia , Simbiose/fisiologia , Wolbachia/metabolismo , Animais , Proteínas de Bactérias/genética , Brasil , Guiana Francesa , Partenogênese , Filogenia , RNA Ribossômico 16S/genética , Transaminases/genética , Trinidad e Tobago , Wolbachia/genética
15.
Sci Total Environ ; 654: 237-249, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445325

RESUMO

Ultramafic (i.e. serpentine) soils are widespread in the Balkans and particularly in Albania. They account for a large part of plant endemism in that region and host several hyperaccumulator species, which are characterized by leaf nickel concentrations frequently above 1%. This rich nickel hyperaccumulating flora could serve as candidate to be used in phytoextraction and agromining. Despite recent interest in metal hyperaccumulating plants and agromining, very few studies have investigated the bacterial diversity and the influence of environmental factors on microbial gene profiles in the rhizosphere of hyperaccumulator plants growing on ultramafic soils. Because rhizospheric bacteria could be crucial to the success of phytoremediation, we studied a total of 48 nickel-hyperaccumulating plants which were sampled from four species that are widespread in Albania: Noccaea ochroleuca, Odontarrhena smolikana, O. rigida and O. chalcidica. All samples were taken from the ultramafic regions of Librazhd and Pogradec in eastern Albania in October 2015. Our study shows that Proteobacteria, Actinobacteria and Acidobacteria dominated the soil bacterial communities. Of these three phyla, only Proteobacteria was relatively abundant. This study underlines the influence of soil Cation Exchange Capacity on the bacterial community's diversity and structure. Based on the predicted metagenomes, the genes belonging to amino acid, lipid and carbohydrate metabolisms were identified as major gene families. Our study sheds some light on our understanding of how bacterial communities are structured within and affect the rhizosphere of hyperaccumulator plants from ultramafic soils in Albania.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Níquel/análise , Proteobactérias/isolamento & purificação , Rizosfera , Poluentes do Solo/análise , Albânia , Biodegradação Ambiental , Biodiversidade , Brassicaceae/metabolismo , Níquel/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
16.
Biotechnol Biofuels ; 11: 196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038663

RESUMO

BACKGROUND: Anaerobic digestion (AD) is a microbe-driven process of biomass decomposition to CH4 and CO2. In addition to renewable and cost-effective energy production, AD has emerged in the European Union as an environmentally friendly model of bio-waste valorisation and nutrient recycling. Nevertheless, due to the high diversity of uncharacterised microbes, a typical AD microbiome is still considered as "dark matter". RESULTS: Using the high-throughput sequencing of small rRNA gene, and a monthly monitoring of the physicochemical parameters for 20 different mesophilic full-scale bioreactors over 1 year, we generated a detailed view of AD microbial ecology towards a better understanding of factors that influence and shape these communities. By studying the broadly distributed OTUs present in over 80% of analysed samples, we identified putatively important core bacteria and archaea to the AD process that accounted for over 70% of the whole microbial community relative abundances. AD reactors localised at the wastewater treatment plants were shown to operate with distinct core microbiomes than the agricultural and bio-waste treating biogas units. We also showed that both the core microbiomes were composed of low (with average community abundance ≤ 1%) and highly abundant microbial populations; the vast majority of which remains yet uncharacterised, e.g. abundant candidate Cloacimonetes. Using non-metric multidimensional scaling, we observed microorganisms grouping into clusters that well reflected the origin of the samples, e.g. wastewater versus agricultural and bio-waste treating biogas units. The calculated diversity patterns differed markedly between the different community clusters, mainly due to the presence of highly diverse and dynamic transient species. Core microbial communities appeared relatively stable over the monitoring period. CONCLUSIONS: In this study, we characterised microbial communities in different AD systems that were monitored over a 1-year period. Evidences were shown to support the concept of a core community driving the AD process, whereas the vast majority of dominant microorganisms remain yet to be characterised.

17.
Sci Total Environ ; 645: 380-392, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029117

RESUMO

Most of the research dedicated to agromining has focused on cultivating a single hyperaccumulator plant, although plant diversity has been shown to positively modify soil characteristics. Hence, we compared the effect of cropping a nickel-hyperaccumulator Alyssum murale with a legume (Vicia sativa) to A. murale's mono-culture, on the bacterial diversity and physico-chemical characteristics of an ultramafic soil. A pot experiment with 5 replicates was conducted in controlled conditions for 11 months. The treatments studied were: co-cropping and rotation vs. mineral fertilization controls and bare soil. The introduction of legumes induced a clearly positive effect on the soil's microbial biomass carbon and nitrogen. Arylsulfatase and urease activities tended to be enhanced in the co-cropping and rotation treatments and to be lessened in the mineral fertilization treatments. However, ß-glucosidase and phosphatase activities were seen to decrease when legumes were used. Our results showed that the rotation treatment induced a higher organic matter content than the fertilized control did. Actinobacteria was the most-represented bacterial phyla and had lower relative abundance in treatments associating legumes. Conversely, the relative abundance of Acidobacteria and Gemmatimonadetes phyla increased but not significantly in treatments with legumes. The relative abundance of Chloroflexi phylum was shown to be significantly higher for the fertilized rotation control. The relative abundance of ß-Proteobacteria subphylum increased but not significantly in treatments with legumes. NMDS analysis showed a clear separation between planted treatments and bare soil and between co-cropping and rotation and fertilized controls. Shannon index showed reduction in microbial diversity that was mainly due to chemical inputs in the soil. This study showed that these new cropping systems influenced both the bacterial diversity and the physico-chemical characteristics of an ultramafic soil. In addition, this study provides evidence that mineral fertilization can negatively impact bacterial communities and some of their functions linked to biogeochemical cycles.

18.
Genome Announc ; 6(21)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29798921

RESUMO

Streptomyces lunaelactis MM109T is a ferroverdin A (anticholesterol) producer isolated from cave moonmilk deposits. The complete genome sequence of MM109T was obtained by combining Oxford Nanopore MinION and Illumina HiSeq and MiSeq technologies, revealing an 8.4-Mb linear chromosome and two plasmids, pSLUN1 (127,264 bp, linear) and pSLUN2 (46,827 bp, circular).

19.
Antibiotics (Basel) ; 7(2)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561792

RESUMO

Moonmilk are cave carbonate deposits that host a rich microbiome, including antibiotic-producing Actinobacteria, making these speleothems appealing for bioprospecting. Here, we investigated the taxonomic profile of the actinobacterial community of three moonmilk deposits of the cave "Grotte des Collemboles" via high-throughput sequencing of 16S rRNA amplicons. Actinobacteria was the most common phylum after Proteobacteria, ranging from 9% to 23% of the total bacterial population. Next to actinobacterial operational taxonomic units (OTUs) attributed to uncultured organisms at the genus level (~44%), we identified 47 actinobacterial genera with Rhodoccocus (4 OTUs, 17%) and Pseudonocardia (9 OTUs, ~16%) as the most abundant in terms of the absolute number of sequences. Streptomycetes presented the highest diversity (19 OTUs, 3%), with most of the OTUs unlinked to the culturable Streptomyces strains that were previously isolated from the same deposits. Furthermore, 43% of the OTUs were shared between the three studied collection points, while 34% were exclusive to one deposit, indicating that distinct speleothems host their own population, despite their nearby localization. This important spatial diversity suggests that prospecting within different moonmilk deposits should result in the isolation of unique and novel Actinobacteria. These speleothems also host a wide range of non-streptomycetes antibiotic-producing genera, and should therefore be subjected to methodologies for isolating rare Actinobacteria.

20.
BMC Genomics ; 18(1): 681, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28863779

RESUMO

BACKGROUND: Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. METHODS: In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. RESULTS: We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit "Epidemiology" in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown for all studied samples, indicating no systematic skewing of the studied pipelines. CONCLUSIONS: We have extensively evaluated the impact of the sampling strategy and library preparation steps on the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. The presented methodological approach has great potential to enhance metatranscriptomic studies of the higher termite intestinal flora and to unravel novel carbohydrate-active enzymes.


Assuntos
Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica/métodos , Isópteros/microbiologia , Lignina/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Simbiose , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...