Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1579, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383676

RESUMO

Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress.


Assuntos
Coesinas , Neoplasias , Humanos , Cromatina , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA
2.
Blood ; 142(6): 519-532, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37339578

RESUMO

Developmental hematopoiesis consists of multiple, partially overlapping hematopoietic waves that generate the differentiated blood cells required for embryonic development while establishing a pool of undifferentiated hematopoietic stem cells (HSCs) for postnatal life. This multilayered design in which active hematopoiesis migrates through diverse extra and intraembryonic tissues has made it difficult to define a roadmap for generating HSCs vs non-self-renewing progenitors, especially in humans. Recent single-cell studies have helped in identifying the rare human HSCs at stages when functional assays are unsuitable for distinguishing them from progenitors. This approach has made it possible to track the origin of human HSCs to the unique type of arterial endothelium in the aorta-gonad-mesonephros region and document novel benchmarks for HSC migration and maturation in the conceptus. These studies have delivered new insights into the intricate process of HSC generation and provided tools to inform the in vitro efforts to replicate the physiological developmental journey from pluripotent stem cells via distinct mesodermal and endothelial intermediates to HSCs.


Assuntos
Embrião de Mamíferos , Células-Tronco Hematopoéticas , Feminino , Gravidez , Humanos , Hematopoese/fisiologia , Mesonefro
3.
Sci Rep ; 12(1): 14804, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045139

RESUMO

Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.


Assuntos
Histona Acetiltransferases , Processamento Pós-Transcricional do RNA , Animais , Histona Acetiltransferases/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Nature ; 604(7906): 534-540, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418685

RESUMO

The ontogeny of human haematopoietic stem cells (HSCs) is poorly defined owing to the inability to identify HSCs as they emerge and mature at different haematopoietic sites1. Here we created a single-cell transcriptome map of human haematopoietic tissues from the first trimester to birth and found that the HSC signature RUNX1+HOXA9+MLLT3+MECOM+HLF+SPINK2+ distinguishes HSCs from progenitors throughout gestation. In addition to the aorta-gonad-mesonephros region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. A comparison of HSCs at different maturation stages revealed the establishment of HSC transcription factor machinery after the emergence of HSCs, whereas their surface phenotype evolved throughout development. The HSC transition to the liver marked a molecular shift evidenced by suppression of surface antigens reflecting nascent HSC identity, and acquisition of the HSC maturity markers CD133 (encoded by PROM1) and HLA-DR. HSC origin was tracked to ALDH1A1+KCNK17+ haemogenic endothelial cells, which arose from an IL33+ALDH1A1+ arterial endothelial subset termed pre-haemogenic endothelial cells. Using spatial transcriptomics and immunofluorescence, we visualized this process in ventrally located intra-aortic haematopoietic clusters. The in vivo map of human HSC ontogeny validated the generation of aorta-gonad-mesonephros-like definitive haematopoietic stem and progenitor cells from human pluripotent stem cells, and serves as a guide to improve their maturation to functional HSCs.


Assuntos
Células Endoteliais , Células-Tronco Hematopoéticas , Diferenciação Celular , Endotélio , Feminino , Hematopoese , Humanos , Mesonefro , Gravidez
5.
Nature ; 576(7786): 281-286, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776511

RESUMO

Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica
6.
Exp Hematol ; 65: 1-16, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981365

RESUMO

Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Retinoides/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais
7.
Nat Biotechnol ; 34(11): 1168-1179, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748754

RESUMO

The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Neovascularização Fisiológica/fisiologia , Aorta/citologia , Aorta/embriologia , Aorta/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Gônadas/citologia , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesonefro/crescimento & desenvolvimento
8.
Nat Cell Biol ; 18(6): 595-606, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27183470

RESUMO

Pluripotent stem cells (PSCs) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had the CD34(+)CD38(-/lo)CD90(+)CD45(+)GPI-80(+) fetal liver (FL) HSPC immunophenotype, but exhibited poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, medial HOXA gene expression induced by retinoic acid signalling marks the establishment of the definitive HSPC fate and controls HSPC identity and function.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Genes Homeobox/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/citologia , Antígenos CD34/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Transcriptoma
9.
Dev Cell ; 36(5): 479-80, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954540

RESUMO

Reporting in Developmental Cell, Pereira et al. (2016) use in vitro lineage reprogramming insights to inform understanding of hematopoietic stem cell (HSC) development in vivo. They find Prom1(+)Sca1(+)CD34(+)CD45(-) hemogenic precursors, akin to fibroblast-derived hemato-vascular precursors, in mouse placenta and embryo. The cells mature into transplantable HSCs in culture.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Murinas/citologia , Animais , Feminino , Gravidez
10.
PLoS Pathog ; 11(6): e1004955, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26067822

RESUMO

Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus--HIV Duo-Fluo I, which identifies latently infected cells immediately after infection--to investigate how T cell activation affects the establishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Ativação Linfocitária/imunologia , Latência Viral/fisiologia , Separação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Replicação Viral/imunologia
11.
Oncotarget ; 6(8): 5903-17, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25788273

RESUMO

Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/ß-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/ß-catenin signaling that also has undefined ß-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Prognóstico , Retinal Desidrogenase , Transdução de Sinais
12.
Cell Stem Cell ; 16(1): 80-7, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25465114

RESUMO

Advances in pluripotent stem cell and reprogramming technologies have given us the hope of generating hematopoietic stem cells (HSCs) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 defines a subpopulation of human fetal liver hematopoietic stem/progenitor cells (HSPCs) with self-renewal ability. CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPCs were the sole population that maintained proliferative potential and an undifferentiated state in stroma coculture and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSPCs once they emerged from endothelium and migrated between human fetal hematopoietic niches. GPI-80 colocalized on the surface of HSPCs with Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of GPI-80 or ITGAM was sufficient to compromise HSPC expansion in culture and engraftment in vivo. These findings indicate that human fetal HSCs employ mechanisms used in leukocyte adhesion and migration to mediate HSC self-renewal.


Assuntos
Amidoidrolases/metabolismo , Moléculas de Adesão Celular/metabolismo , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feto/citologia , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunofenotipagem , Fígado/citologia , Fígado/embriologia
13.
EMBO J ; 33(6): 534-5, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24562387

RESUMO

Stem cells ensure the maintenance of tissue homeostasis throughout life by tightly regulating their self-renewal and differentiation. In a recent study published in Nature, Nakada et al, 2014 unveil an unexpected endocrine mechanism that regulates hematopoietic stem cell (HSC) self-renewal.


Assuntos
Estrogênios/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Feminino , Masculino , Gravidez
14.
Diabetologia ; 57(6): 1154-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24570141

RESUMO

AIMS/HYPOTHESIS: The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. METHODS: DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. RESULTS: After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (χ(2), p < 0.001). CONCLUSIONS/INTERPRETATION: Our results indicate lower DNA methylation plasticity in skeletal muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.


Assuntos
Metilação de DNA/genética , Dieta Hiperlipídica/efeitos adversos , Recém-Nascido de Baixo Peso/fisiologia , Adulto , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Músculo Esquelético/metabolismo , Adulto Jovem , DNA Metiltransferase 3B
15.
Virology ; 446(1-2): 283-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074592

RESUMO

HIV latency constitutes the main barrier for clearing HIV infection from patients. Our inability to recognize and isolate latently infected cells hinders the study of latent HIV. We engineered two HIV-based viral reporters expressing different fluorescent markers: one HIV promoter-dependent marker for productive HIV infection, and a second marker under a constitutive promoter independent of HIV promoter activity. Infection of cells with these viruses allows the identification and separation of latently infected cells from uninfected and productively infected cells. These reporters are sufficiently sensitive and robust for high-throughput screening to identify drugs that reactivate latent HIV. These reporters can be used in primary CD4 T lymphocytes and reveal a rare population of latently infected cells responsive to physiological stimuli. In summary, our HIV-1 reporters enable visualization and purification of latent-cell populations and open up new perspectives for studies of latent HIV infection.


Assuntos
Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/fisiologia , Coloração e Rotulagem/métodos , Virologia/métodos , Latência Viral , Linfócitos T CD4-Positivos/virologia , HIV-1/genética , Humanos , Ativação Viral/efeitos dos fármacos
16.
Cancer Cell ; 24(1): 15-29, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23845441

RESUMO

We show that BRAF(V600E) initiates an alternative pathway to colorectal cancer (CRC), which progresses through a hyperplasia/adenoma/carcinoma sequence. This pathway underlies significant subsets of CRCs with distinctive pathomorphologic/genetic/epidemiologic/clinical characteristics. Genetic and functional analyses in mice revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. We further demonstrate dose-dependent effects of oncogenic signaling, with physiologic Braf(V600E) expression being sufficient for hyperplasia induction, but later stage intensified Mapk-signaling driving both tumor progression and activation of intrinsic tumor suppression. Such phenomena explain, for example, the inability of p53 to restrain tumor initiation as well as its importance in invasiveness control, and the late stage specificity of its somatic mutation. Finally, systematic drug screening revealed sensitivity of this CRC subtype to targeted therapeutics, including Mek or combinatorial PI3K/Braf inhibition.


Assuntos
Neoplasias Colorretais/etiologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico , Inibidor p16 de Quinase Dependente de Ciclina , Ensaios de Seleção de Medicamentos Antitumorais , Sistema de Sinalização das MAP Quinases , Camundongos , Instabilidade de Microssatélites , Invasividade Neoplásica , Proteínas de Neoplasias/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteína Supressora de Tumor p53/fisiologia , Via de Sinalização Wnt
17.
Trends Microbiol ; 21(6): 277-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23517573

RESUMO

Latent HIV persists in CD4(+) T cells in infected patients under antiretroviral therapy (ART). Latency is associated with transcriptional silencing of the integrated provirus and driven, at least in part, by histone deacetylases (HDACs), a family of chromatin-associated proteins that regulate histone acetylation and the accessibility of DNA to transcription factors. Remarkably, inhibition of HDACs is sufficient to reactivate a fraction of latent HIV in a variety of experimental systems. This basic observation led to the shock and kill idea that forcing the transcriptional activation of HIV might lead to virus expression, to virus- or host-induced cell death of the reactivated cells, and to the eradication of the pool of latently infected cells. Such intervention might possibly lead to a cure for HIV-infected patients. Here, we review the basic biology of HDACs and their inhibitors, the role of HDACs in HIV latency, and recent efforts to use HDAC inhibitors to reactivate latent HIV in vitro and in vivo.


Assuntos
HIV-1/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Infecções por HIV/virologia , HIV-1/enzimologia , HIV-1/fisiologia , Inibidores de Histona Desacetilases/química , Humanos , Linfócitos T/virologia
18.
Cell Cycle ; 12(3): 452-62, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255218

RESUMO

The therapeutic potential of pharmacologic inhibition of bromodomain and extraterminal (BET) proteins has recently emerged in hematological malignancies and chronic inflammation. We find that BET inhibitor compounds (JQ1, I-Bet, I-Bet151 and MS417) reactivate HIV from latency. This is evident in polyclonal Jurkat cell populations containing latent infectious HIV, as well as in a primary T-cell model of HIV latency. Importantly, we show that this activation is dependent on the positive transcription elongation factor p-TEFb but independent from the viral Tat protein, arguing against the possibility that removal of the BET protein BRD4, which functions as a cellular competitor for Tat, serves as a primary mechanism for BET inhibitor action. Instead, we find that the related BET protein, BRD2, enforces HIV latency in the absence of Tat, pointing to a new target for BET inhibitor treatment in HIV infection. In shRNA-mediated knockdown experiments, knockdown of BRD2 activates HIV transcription to the same extent as JQ1 treatment, while a lesser effect is observed with BRD4. In single-cell time-lapse fluorescence microscopy, quantitative analyses across ~2,000 viral integration sites confirm the Tat-independent effect of JQ1 and point to positive effects of JQ1 on transcription elongation, while delaying re-initiation of the polymerase complex at the viral promoter. Collectively, our results identify BRD2 as a new Tat-independent suppressor of HIV transcription in latently infected cells and underscore the therapeutic potential of BET inhibitors in the reversal of HIV latency.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Azepinas/farmacologia , Benzodiazepinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular , Células Cultivadas , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/genética , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células Jurkat , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Triazóis/farmacologia , Latência Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
PLoS One ; 7(12): e51302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251491

RESUMO

BACKGROUND: Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins. METHODOLOGY/PRINCIPAL FINDINGS: Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were collected from 53-80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard deviation of intra-pair differences: 10% points vs. 4% points, P<0.001). Increased variation of LINE1 sequence methylation was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences. Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including PPARGC1A in muscle (13.9±6.2% vs. 9.0±4.5%, P = 0.03) and HNF4A in adipose tissue (75.2±3.8% vs. 70.5±3.7%, P<0.001) which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue, respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple testing. CONCLUSIONS/SIGNIFICANCE: Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger samples.


Assuntos
Tecido Adiposo/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Músculo Esquelético/metabolismo , Gêmeos Monozigóticos , Diabetes Mellitus Tipo 2/genética , Humanos
20.
Proc Natl Acad Sci U S A ; 109(28): 11318-23, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733740

RESUMO

PIK3R2 encodes a ubiquitous regulatory subunit (p85ß) of PI3K, an enzyme that generates 3-polyphosphoinositides at the plasma membrane. PI3K activation triggers cell survival and migration. We found that p85ß expression is elevated in breast and colon carcinomas and that its increased expression correlates with PI3K pathway activation and tumor progression. p85ß expression induced moderate PIP(3) generation at the cell membrane and enhanced cell invasion. In accordance, genetic alteration of pik3r2 expression levels modulated tumor progression in vivo. Increased p85ß expression thus represents a cellular strategy in cancer progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Neoplasias do Colo/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos SCID , Camundongos Transgênicos , Células NIH 3T3 , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...