Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577611

RESUMO

Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.

2.
Toxins (Basel) ; 12(5)2020 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429516

RESUMO

Neuroinflammation plays a significant role in amyotrophic lateral sclerosis (ALS) pathology, leading to the development of therapies targeting inflammation in recent years. Our group has studied the tetanus toxin C-terminal fragment (TTC) as a therapeutic molecule, showing neuroprotective properties in the SOD1G93A mouse model. However, it is unknown whether TTC could have some effect on inflammation. The objective of this study was to assess the effect of TTC on the regulation of inflammatory mediators to elucidate its potential role in modulating inflammation occurring in ALS. After TTC treatment in SOD1G93A mice, levels of eotaxin-1, interleukin (IL)-2, IL-6 and macrophage inflammatory protein (MIP)-1 alpha (α) and galectin-1 were analyzed by immunoassays in plasma samples, whilst protein expression of caspase-1, IL-1ß, IL-6 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was measured in the spinal cord, extensor digitorum longus (EDL) muscle and soleus (SOL) muscle. The results showed reduced levels of IL-6 in spinal cord, EDL and SOL in treated SOD1G93A mice. In addition, TTC showed a different role in the modulation of NLRP3 and caspase-1 depending on the tissue analyzed. In conclusion, our results suggest that TTC could have a potential anti-inflammatory effect by reducing IL-6 levels in tissues drastically affected by the disease. However, further research is needed to study more in depth the anti-inflammatory effect of TTC in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Toxina Tetânica/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Inflamassomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética
3.
Neural Regen Res ; 15(6): 988-995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31823868

RESUMO

Among collagen members in the collagen superfamily, type XIX collagen has raised increasing interest in relation to its structural and biological roles. Type XIX collagen is a Fibril-Associated Collagen with Interrupted Triple helices member, one main subclass of collagens in this superfamily. This collagen contains a triple helix composed of three polypeptide segments aligned in parallel and it is associated with the basement membrane zone in different tissues. The molecular structure of type XIX collagen consists of five collagenous domains, COL1 to COL5, interrupted by six non-collagenous domains, NC1 to NC6. The most relevant domain by which this collagen exerts its biological roles is NC1 domain that can be cleavage enzymatically to release matricryptins, exerting anti-tumor and anti-angiogenic effect in murine and human models of cancer. Under physiological conditions, type XIX collagen expression decreases after birth in different tissues although it is necessary to keep its basal levels, mainly in skeletal muscle and hippocampal and telencephalic interneurons in brain. Notwithstanding, in amyotrophic lateral sclerosis, altered transcript expression levels show a novel biological effect of this collagen beyond its structural role in basement membranes and its anti-tumor and anti-angiogenic properties. Type XIX collagen can exert a compensatory effect to ameliorate the disease progression under neurodegenerative conditions specific to amyotrophic lateral sclerosis in transgenic SOD1G93A mice and amyotrophic lateral sclerosis patients. This novel biological role highlights its nature as prognostic biomarker of disease progression in and as promising therapeutic target, paving the way to a more precise prognosis of amyotrophic lateral sclerosis.

4.
Aging Dis ; 10(2): 278-292, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011479

RESUMO

The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.

5.
Neuron ; 97(2): 356-367.e4, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307713

RESUMO

Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT.


Assuntos
Caenorhabditis elegans/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Resposta Táctica/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Cálcio/fisiologia , Mutação , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Análise de Célula Única , Temperatura , Sensação Térmica/fisiologia , Transgenes
6.
PLoS One ; 12(9): e0184626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886177

RESUMO

Amyotrophic Lateral Sclerosis (ALS) has lately become a suitable scenario to study the interplay between the hematopoietic system and disease progression. Recent studies in C9orf72 null mice have demonstrated that C9orf72 is necessary for the normal function of myeloid cells. In this study, we aimed to analyze in depth the connection between the hematopoietic system and secondary lymphoid (spleen) and non-lymphoid (liver and skeletal muscle) organs and tissues along the disease progression in the transgenic SOD1G93A mice. Our findings suggested that the inflammatory response due to the neurodegeneration in this animal model affected all three organs and tissues, especially the liver and the skeletal muscle. However, the liver was able to compensate this inflammatory response by means of the action of non-inflammatory monocytes, while in the skeletal muscle inflammatory monocytes prompted a further inflammation process until the terminal state of the animals. Interestingly, in blood, a positive correlation was found between non-inflammatory monocytes and survival of the transgenic SOD1G93A mice, while the contrary (a negative correlation) was found in the case of inflammatory monocytes, supporting their potential role as biomarkers of disease progression and survival in this animal model. These findings could prompt future translational studies in ALS patients, promoting the identification of new reliable biomarkers of disease progression.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Monócitos/metabolismo , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/citologia , Baço/metabolismo
7.
Front Mol Neurosci ; 9: 76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605908

RESUMO

Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

8.
Neurobiol Dis ; 95: 168-78, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27461051

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motoneurons, which is preceded by loss of neuromuscular connections in a "dying back" process. Neuregulin-1 (Nrg1) is a neurotrophic factor essential for the development and maintenance of neuromuscular junctions, and Nrg1 receptor ErbB4 loss-of-function mutations have been reported as causative for ALS. Our main goal was to investigate the role of Nrg1 type I (Nrg1-I) in SOD1(G93A) mice muscles. We overexpressed Nrg1-I by means of an adeno-associated viral (AAV) vector, and investigated its effect by means of neurophysiological techniques assessing neuromuscular function, as well as molecular approaches (RT-PCR, western blot, immunohistochemistry, ELISA) to determine the mechanisms underlying Nrg1-I action. AAV-Nrg1-I intramuscular administration promoted motor axon collateral sprouting by acting on terminal Schwann cells, preventing denervation of the injected muscles through Akt and ERK1/2 pathways. We further used a model of muscle partial denervation by transecting the L4 spinal nerve. AAV-Nrg1-I intramuscular injection enhanced muscle reinnervation by collateral sprouting, whereas administration of lapatinib (ErbB receptor inhibitor) completely blocked it. We demonstrated that Nrg1-I plays a crucial role in the collateral reinnervation process, opening a new window for developing novel ALS therapies for functional recovery rather than preservation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Neuregulina-1/metabolismo , Junção Neuromuscular/metabolismo , Quinazolinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Lapatinib , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Denervação Muscular/métodos , Neurogênese/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Biochim Biophys Acta ; 1864(9): 1195-1205, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179589

RESUMO

In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Glioxilatos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Transaminases/química , Adaptação Biológica , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Dimerização , Metabolismo Energético , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glioxilatos/química , Humanos , Mutação , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Homologia Estrutural de Proteína , Temperatura , Transaminases/genética , Transaminases/metabolismo
10.
Genetics ; 200(1): 237-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808955

RESUMO

Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.


Assuntos
Aminas Biogênicas/biossíntese , Biopterinas/análogos & derivados , Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Animais , Biopterinas/genética , Biopterinas/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Serotonina/metabolismo
11.
Biomed Res Int ; 2014: 925101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157374

RESUMO

Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimer's, Huntington's, and Parkinson's diseases. However, the molecular targets that directly influence its aggressive nature remain unknown. What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/terapia , Animais , Biomarcadores/metabolismo , Humanos , Guias de Prática Clínica como Assunto
12.
J Nutr Biochem ; 25(8): 885-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917047

RESUMO

Amyotrophic lateral sclerosis is a neurodegenerative disease associated with mutations in antioxidant enzyme Cu/Zn-superoxide dismutase 1. Albeit there is no treatment for this disease, new insights related to an exacerbated lipid metabolism have been reported. In connection with the hypermetabolic lipid status, the hypothesis whether nature of dietary fat might delay the progression of the disease was tested by using a transgenic mouse that overexpresses the human SOD1G93A variant. For this purpose, SOD1G93A mice were assigned randomly to one of the following three experimental groups: (1) a standard chow diet (control, n=21), (2) a chow diet enriched with 20% (w/w) extra virgin olive oil (EVOO, n=22) and (3) a chow diet containing 20% palm oil (palm, n=20). They received the diets for 8 weeks and the progression of the disease was assessed. On the standard chow diet, average plasma cholesterol levels were lower than those mice receiving the high-fat diets. Mice fed an EVOO diet showed a significant higher survival and better motor performance than control mice. EVOO group mice survived longer and showed better motor performance and larger muscle fiber area than animals receiving palm. Moreover, the EVOO-enriched diet improved the muscle status as shown by expression of myogenic factors (Myod1 and Myog) and autophagy markers (LC3 and Beclin1), as well as diminished endoplasmic reticulum (ER) stress through decreasing Atf6 and Grp78. Our results demonstrate that EVOO may be effective in increasing survival rate, improving motor coordination together with a potential amelioration of ER stress, autophagy and muscle damage.


Assuntos
Esclerose Lateral Amiotrófica/prevenção & controle , Autofagia/efeitos dos fármacos , Óleos de Plantas/farmacologia , Superóxido Dismutase/genética , Fator 6 Ativador da Transcrição/metabolismo , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Colesterol/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Azeite de Oliva , Óleo de Palmeira , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
13.
Neuron ; 82(5): 1115-28, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24908490

RESUMO

Brain circuits endow behavioral flexibility. Here, we study circuits encoding flexible chemotaxis in C. elegans, where the animal navigates up or down NaCl gradients (positive or negative chemotaxis) to reach the salt concentration of previous growth (the set point). The ASER sensory neuron mediates positive and negative chemotaxis by regulating the frequency and direction of reorientation movements in response to salt gradients. Both salt gradients and set point memory are encoded in ASER temporal activity patterns. Distinct temporal activity patterns in interneurons immediately downstream of ASER encode chemotactic movement decisions. Different interneuron combinations regulate positive versus negative chemotaxis. We conclude that sensorimotor pathways are segregated immediately after the primary sensory neuron in the chemotaxis circuit, and sensory representation is rapidly transformed to motor representation at the first interneuron layer. Our study reveals compact encoding of perception, memory, and locomotion in an experience-dependent navigational behavior in C. elegans.


Assuntos
Quimiotaxia/fisiologia , Memória/fisiologia , Percepção/fisiologia , Animais , Caenorhabditis elegans , Cálcio/metabolismo , Células Quimiorreceptoras/fisiologia , Interneurônios/fisiologia
14.
Proc Natl Acad Sci U S A ; 111(7): 2776-81, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550307

RESUMO

The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (Ts) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above Ts (negative thermotaxis) and performs isothermal tracking near Ts. Under some conditions, the worm migrates up temperature gradients below Ts (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward Ts to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below Ts. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.


Assuntos
Caenorhabditis elegans/fisiologia , Memória de Longo Prazo/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Neurônios/fisiologia , Sensação Térmica/fisiologia , Animais , Temperatura
15.
Neurodegener Dis ; 11(3): 153-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22797053

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurodegenerative disease characterized by ascending muscle weakness, atrophy and paralysis. Early muscle abnormalities that precede motor neuron loss in ALS may destabilize neuromuscular junctions, and we have previously demonstrated alterations in myogenic regulatory factor (MRF) expression in vivo and in the activation of myofiber-associated skeletal muscle satellite cells (SMSCs) in the mouse model of ALS (SOD1-G93A). METHODS: To elucidate niche dependence versus cell-autonomous mutant SOD1 (mSOD1) toxicity in this model, we measured in vitro proliferation potential and MRF and cyclin gene expression in SMSC cultures derived from fast-twitch extensor digitorum longus and slow-twitch soleus muscles of SOD1-G93A mice. RESULTS: SMSCs from early presymptomatic (p40) to terminal, semi-paralytic (p120) SOD1-G93A mice demonstrated generally lower proliferation potential compared with age-matched controls. However, induced proliferation was observed in surgically denervated wild-type animals and SOD1-G93A animals at p90, when critical denervation arises. SMSCs from fast and slow muscles were similarly affected by mSOD1 expression. Lowered proliferation rate was generally corroborated with decreased relative MRF expression levels, although this was most prominent in early age and was modulated by muscle type origin. Cyclins controlling cell proliferation did not show modifications in their mRNA levels; however, the expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a), which is known to promote myoblast differentiation, was decreased in SOD1-G93A cultures. CONCLUSIONS: Our data suggest that the function of SMSCs is impaired in SOD1-G93A satellite cells from the earliest stages of the disease when no critical motor neuron loss has been described.


Assuntos
Proliferação de Células , Células Satélites de Músculo Esquelético/enzimologia , Células Satélites de Músculo Esquelético/patologia , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Transgênicos
16.
Int J Mol Sci ; 13(6): 6883-6901, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837670

RESUMO

When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.


Assuntos
Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Toxina Tetânica/metabolismo , Animais , Axônios/metabolismo , Clostridium tetani/metabolismo , Citosol/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios Motores/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
PLoS One ; 7(3): e32632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412900

RESUMO

The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A) mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A) mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A) mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Mutantes/genética , Superóxido Dismutase/genética , Animais , Biópsia , Denervação , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Longevidade/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Superóxido Dismutase-1 , Transcrição Gênica
18.
J Cell Biochem ; 112(10): 2825-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21608019

RESUMO

During postnatal growth and after muscle injury, satellite cells proliferate and differentiate into myotubes to form and repair musculature. Comparison of studies on satellite cell proliferation and differentiation characteristics is confounded by the heterogeneity of the experimental conditions used. To examine the influence of sex, age, and fiber-type origin on in vitro properties of satellite cells derived from postnatal muscles, fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles were extracted from male and female mice of 1 week to 3 months of age. Myoblast proliferation and myogenic regulatory factor (MRF) expression was measured from cultures of freshly isolated satellite cells. Higher proliferation rate and elevated Myod1 expression was found in male EDL and SOL derived cells compared with females at age of 40, 60, and 120 days, whereas inverse tendency for cell proliferation was apparent in EDL of juvenile (7-day-old) pups. Myogenin and Mrf4 transcripts were generally elevated in males of 40 and 60 days of age and in female EDL of juveniles. However, these differentiation markers did not significantly correlate with proliferation rate at all ages. Pax7, whose overexpression can block myogenesis, was up-regulated especially in 40-day-old females where MRF expression was low. These results indicate that gender, postnatal age, and muscle fiber origin affect proliferation and muscle transcription factor expression in vitro. The results also support the view that satellite cells originating from slow and fast muscles are intrinsically different and warrant further studies on the effect of cell origin for therapeutic approaches.


Assuntos
Células Satélites de Músculo Esquelético/citologia , Fatores Etários , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Proteína MyoD/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fatores Sexuais
19.
Orphanet J Rare Dis ; 6: 10, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21418619

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. Neurotrophic factors have been widely tested to counteract neurodegenerative conditions, despite their unspecific neuronal access. The non-toxic C-terminal fragment of the tetanus toxin (TTC) heavy chain has been studied not only as a carrier molecule to the CNS but also as a neuroprotective agent. Because the neurotrophic effects of BDNF have been demonstrated in vitro and in vivo, the question addressed in this work is whether a fusion molecule of BDNF-TTC may have a synergistic effect and enhance the neuroprotective properties of TTC alone in a mouse model of ALS. METHODS: Recombinant plasmid constructs (pCMV-TTC and pCMV-BDNF-TTC) were injected into the quadriceps femoris and triceps brachialis muscles of SOD1(G93A) transgenic mice at 8 weeks of age. The hanging wire and rotarod tests were performed to assess motor coordination, strength and balance. Electrophysiological tests, morphological assays of spinal cord sections of L2 and L4 segments, and gene and protein expression analyses were performed. The Kaplan-Meier survival analysis test was used for comparisons of survival. Multiple comparisons of data were analyzed using a one-way analysis of variance (ANOVA). RESULTS: Treatment with the fusion-molecule BDNF-TTC and with TTC alone significantly delayed the onset of symptoms and functional deficits of SOD1(G93A) mice. Muscle innervation was partially preserved with these treatments, and the number of surviving motoneurons in L2 spinal cord segment was increased particularly by the fusion protein induction. Inhibition of pro-apoptotic protein targets (caspase-3 and Bax) and significant phosphorylation of Akt and ERK were also found in the spinal cord of treated mice. CONCLUSIONS: Significant improvements in behavioral and electrophysiological results, motoneuron survival and anti-apoptotic/survival-activated pathways were observed with BDNF-TTC treatment. However, no synergistic effect was found for this fusion molecule. Although BDNF in the fusion molecule is capable of activating autocrine and neuroprotective pathways, TTC treatment alone yielded similar neuroprotection. Therefore, an accurate study of the neuroprotective effects of TTC fusion molecules should be performed to obtain a better understanding of its effects.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Terapia Genética/métodos , Proteínas Recombinantes de Fusão/farmacologia , Toxina Tetânica/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Comportamento Animal/fisiologia , Feminino , Perfilação da Expressão Gênica , Histocitoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Condução Nervosa/fisiologia , Plasmídeos/genética , Distribuição Aleatória , Medula Espinal/patologia
20.
Biochem Biophys Res Commun ; 407(4): 758-63, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21439935

RESUMO

Reliability and accuracy of real-time quantitative PCR results depend on the use of housekeeping genes which must be constitutively expressed thorough the samples of the study. In the present work, we tested the expression stability of six candidate housekeeping genes (Actb, Rn18s, Gapdh, Hprt1, Sdha and B2m) considering sex, age, muscle-type and neurodegeneration or denervation status in mouse muscle satellite cells. Their expression varied under all variables tested; therefore the ranking of the most suitable genes for the normalization is modified depending on the factors included in the analysis, especially the age of the donor. Moreover, we describe the unsuitability of Rn18s in analysis comprising samples of different ages. On the other hand, we demonstrate that the use of the two best genes in each case is enough to obtain a reliable normalization factor. In this work, we give a broad information of the best housekeeping genes in mouse myogenic cells depending on the variables included in the experimental design.


Assuntos
Perfilação da Expressão Gênica , Doenças Neurodegenerativas/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores Etários , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Denervação Muscular , Reação em Cadeia da Polimerase , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...