Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 801, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692549

RESUMO

Many links between gut microbiota and disease development have been established in recent years, with particular bacterial strains emerging as potential therapeutics rather than causative agents. In this study we describe the immunostimulatory properties of Enterococcus gallinarum MRx0518, a candidate live biotherapeutic with proven anti-tumorigenic efficacy. Here we demonstrate that strain MRx0518 elicits a strong pro-inflammatory response in key components of the innate immune system but also in intestinal epithelial cells. Using a flagellin knock-out derivative and purified recombinant protein, MRx0518 flagellin was shown to be a TLR5 and NF-κB activator in reporter cells and an inducer of IL-8 production by HT29-MTX cells. E. gallinarum flagellin proteins display a high level of sequence diversity and the flagellin produced by MRx0518 was shown to be more potent than flagellin from E. gallinarum DSM100110. Collectively, these data infer that flagellin may play a role in the therapeutic properties of E. gallinarum MRx0518.


Assuntos
Antineoplásicos Imunológicos/imunologia , Enterococcus/imunologia , Flagelina/genética , Flagelina/imunologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular , Células Dendríticas/imunologia , Enterococcus/genética , Flagelina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HT29 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Células THP-1/imunologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
2.
Int J Antimicrob Agents ; 49(3): 282-289, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28104423

RESUMO

Enterococcus faecalis 14, a strain previously isolated from meconium, displayed activity against four Clostridium perfringens isolates when co-cultured on agar plates. The anti-Clostridium activity was ascribed to the production of enterocin DD14, which was subsequently purified. The minimum inhibitory concentration (MIC) of enterocin DD14 against one collection strain and one clinical C. perfringens strain was determined at 50 µg/mL. Furthermore, using the intestinal epithelial cell line IPEC-1, it was shown that E. faecalis 14 was not cytotoxic after 24 h of contact, and no cytotoxicity was observed when IPEC-1 cells were incubated with pure enterocin DD14 for 4 h. Enterocin DD14 was characterised using mass spectrometry and was shown to consist of two small proteins of 5200.74 Da and 5206.41 Da, respectively. The two peptides (DD14A and DD14B) have highly similar amino acid sequences and no signal peptide, which classifies enterocin DD14 as a class IIb leaderless two-peptide bacteriocin. The genes encoding DD14A and DD14B were sequenced and were shown to be 100% identical to other previously described enterocins MR10A and MR10B, in contrast to the producing strains, which are different. Consequently, the present in vitro study supports the potential of this E. faecalis 14 strain and/or its purified enterocin DD14 as putative anti-C. perfringens compounds in chickens.


Assuntos
Antibacterianos/farmacologia , Clostridium perfringens/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/isolamento & purificação , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular , Sobrevivência Celular , Enterococcus faecalis/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Testes de Sensibilidade Microbiana , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Suínos
3.
Microbiology (Reading) ; 163(1): 4-8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27902434

RESUMO

At the end of June, over 120 microbiologists from 18 countries gathered in Dundee, Scotland for the fourth edition of the Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis'. The aim of the symposium was to give early career microbiologists the opportunity to present their work in a convivial environment and to interact with senior world-renowned scientists in exciting fields of microbiology research. The meeting was supported by the Microbiology Society, the Society of Applied Microbiology and the American Society for Microbiology with further sponsorship from the European Molecular Biology Organisation and the Royal Society of Edinburgh. In this report, we highlight some themes that emerged from the many interesting talks and poster presentations, as well as some of the other activities that were on offer at this energetic meeting.


Assuntos
Bactérias/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Fenômenos Microbiológicos , Bactérias/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
4.
Bioprocess Biosyst Eng ; 40(2): 161-180, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738757

RESUMO

Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.


Assuntos
Enzimas/biossíntese , Enzimas/química , Enzimas/genética , Engenharia de Proteínas/métodos , Catálise
5.
J Colloid Interface Sci ; 480: 63-68, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27405072

RESUMO

A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum ß-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50µgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Ferrocianetos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas/química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Temperatura
6.
Mol Plant Pathol ; 17(8): 1298-313, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27170435

RESUMO

FUTURE CHALLENGES IN PLANT PATHOLOGY: Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field.


Assuntos
Bactérias/patogenicidade , Patologia Vegetal , Plantas/microbiologia , Percepção de Quorum , Transdução de Sinais , Estresse Fisiológico
7.
Front Microbiol ; 6: 1336, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648920

RESUMO

Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control.

8.
Curr Pharm Des ; 21(1): 12-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25189859

RESUMO

Cyclic di-GMP is a second messenger found in almost all eubacteria that acts to regulate a wide range of functions including developmental transitions, adhesion and biofilm formation. Cyclic di-GMP is synthesised from two GTP molecules by diguanylate cyclases that have a GGDEF domain and is degraded by phosphodiesterases with either an EAL or an HD-GYP domain. Proteins with these domains often contain additional signal input domains, suggesting that their enzymatic activity may be modulated as a response to different environmental or cellular cues. Cyclic di-GMP exerts a regulatory action through binding to diverse receptors that include a small protein domain called PilZ, enzymatically inactive GGDEF, EAL or HD-GYP domains, transcription factors and riboswitches. In many bacteria, high cellular levels of cyclic di-GMP are associated with a sessile, biofilm lifestyle, whereas low levels of the nucleotide promote motility and virulence factor synthesis in pathogens. Elucidation of the roles of cyclic di-GMP signalling in biofilm formation has suggested strategies whereby modulation of the levels of the nucleotide or interference with signalling pathways may lead to inhibition of biofilm formation or promotion of biofilm dispersal. In this review we consider these approaches for the control of biofilm formation, beginning with an overview of cyclic di-GMP signalling and the different ways that it can act in regulation of biofilm dynamics.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Transdução de Sinais/fisiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , GMP Cíclico/metabolismo , Humanos , Estrutura Terciária de Proteína/fisiologia
9.
PLoS Pathog ; 10(10): e1004429, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329577

RESUMO

Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d)∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Mutação/genética , Proteínas de Ligação a RNA/metabolismo , Sistemas do Segundo Mensageiro/genética , Xanthomonas campestris/patogenicidade , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
10.
J Bacteriol ; 196(20): 3527-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070739

RESUMO

The third Young Microbiologists Symposium took place on the vibrant campus of the University of Dundee, Scotland, from the 2nd to 3rd of June 2014. The symposium attracted over 150 microbiologists from 17 different countries. The significant characteristic of this meeting was that it was specifically aimed at providing a forum for junior scientists to present their work. The meeting was supported by the Society for General Microbiology and the American Society for Microbiology, with further sponsorship from the European Molecular Biology Organization, the Federation of European Microbiological Societies, and The Royal Society of Edinburgh. In this report, we highlight some themes that emerged from the many exciting talks and poster presentations given by the young and talented microbiologists in the area of microbial gene expression, regulation, biogenesis, pathogenicity, and host interaction.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Pesquisa Biomédica/tendências , Microbiologia/organização & administração , Bactérias/genética , Bactérias/patogenicidade , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/fisiologia
11.
Mol Microbiol ; 91(1): 26-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24176013

RESUMO

Bis-(3',5') cyclic di-guanylate (c-di-GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c-di-GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD-GYP domains. Here, we have determined the structure of an enzymatically active HD-GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c-di-GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c-di-GMP. This structure completes the picture of all domains involved in c-di-GMP metabolism and reveals that the HD-GYP family splits into two distinct subgroups containing bi- and trinuclear metal centres.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/química , Proteínas de Bactérias/química , Domínio Catalítico , GMP Cíclico/análogos & derivados , Bactérias Gram-Negativas/enzimologia , Ferro/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , GMP Cíclico/metabolismo , Evolução Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
Mol Microbiol ; 86(3): 501-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22934780

RESUMO

In mid-June, the second Young Microbiologists Symposium took place under the broad title of 'Microbe signalling, organization and pathogenesis' on the picturesque campus of University College Cork, Ireland. The symposium attracted 150 microbiologists from 15 different countries. The key feature of this meeting was that it was specifically aimed at providing a platform for junior scientists to present their work to a broad audience. The meeting was principally supported by Science Foundation Ireland with further backing from the Society for General Microbiology, the American Society for Microbiology and the European Molecular Biology Organization. Sessions focused on microbial gene expression, biogenesis, pathogenicity and host interaction. In this MicroMeeting report, we highlight some of the most significant advances and exciting developments reported during various talks and poster presentations given by the young and talented microbiologists.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Transdução de Sinais , Animais , Bactérias/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos
13.
PLoS One ; 7(8): e42205, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870303

RESUMO

The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs) serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth) larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Farmacorresistência Bacteriana/fisiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Humanos , Larva/microbiologia , Mariposas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/genética
14.
J Mol Biol ; 403(3): 405-19, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20826163

RESUMO

We have determined the 2.2-Å structure of the HP0958 protein from the human gastric pathogen Helicobacter pylori. HP0958 is essential for flagellum formation and motility. It functions as a chaperone for RpoN (σ(54)) and also controls the stability and translation of mRNA for the major flagellin subunit FlaA. The protein is composed of a highly elongated and kinked coiled-coil hairpin domain (residues 1-170), followed by a C(4) Zn-ribbon domain (residues 174-238). The Zn-ribbon domain is rich in aromatic and positively charged amino acid residues. Electrophoretic mobility shift assays identified residues in a positively charged region of the Zn-ribbon domain of HP0958 whose mutation alters the mobility of an HP0958-flaA mRNA complex. Mutation of surface residues in the coiled-coil domain did not result in an observable change in the mobility of the HP0958-flaA transcript complex. The data thus suggest the arrangement of HP0958 into distinct structural and functional domains.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/metabolismo , Zinco/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Flagelos/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
15.
BMC Microbiol ; 10: 106, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20377912

RESUMO

BACKGROUND: Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. RESULTS: Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. CONCLUSIONS: We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.


Assuntos
Proteínas de Bactérias/fisiologia , Membrana Celular/metabolismo , Helicobacter pylori/fisiologia , Locomoção , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular , Biologia Computacional , Células Epiteliais/microbiologia , Flagelos/fisiologia , Flagelos/ultraestrutura , Deleção de Genes , Perfilação da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Helicobacter pylori/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos
16.
J Bacteriol ; 190(24): 7975-84, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931105

RESUMO

The Helicobacter pylori protein HP0958 is essential for flagellum biogenesis. It has been shown that HP0958 stabilizes the sigma(54) factor RpoN. The aim of this study was to further investigate the role of HP0958 in flagellum production in H. pylori. Global transcript analysis identified a number of flagellar genes that were differentially expressed in an HP0958 mutant strain. Among these, the transcription of the major flagellin gene flaA was upregulated twofold, suggesting that HP0958 was a negative regulator of the flaA gene. However, the production of the FlaA protein was significantly reduced in the HP0958 mutant, and this was not due to the decreased stability of the FlaA protein. RNA stability analysis and binding assays indicated that HP0958 binds and destabilizes flaA mRNA. The HP0958 mutant was successfully complemented, confirming that the mutant phenotype described was due to the lack of HP0958. We conclude that HP0958 is a posttranscriptional regulator that modulates the amount of the flaA message available for translation in H. pylori.


Assuntos
Flagelina/biossíntese , Helicobacter pylori/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Sigma 54/metabolismo , Processamento Pós-Transcricional do RNA , Clonagem Molecular , Eletroforese em Gel de Ágar , Ensaio de Desvio de Mobilidade Eletroforética , Flagelina/genética , Flagelina/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Helicobacter pylori/metabolismo , Chaperonas Moleculares/genética , Mutação , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase Sigma 54/genética , Estabilidade de RNA , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...