Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Heliyon ; 10(5): e26423, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434363

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.

2.
Pharmaceutics ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004509

RESUMO

Most electrospun scaffolds for bone tissue engineering typically use hydroxyapatite (HA) or beta tricalcium phosphate (ß-TCP). However, the biological activity of these crystalline compounds can be limited due to their low solubility. Therefore, amorphous calcium phosphate (ACP) may be an alternative in bone repair scaffolds. This study analyzes the morphology, porosity, mechanical strength, and surface chemistry of electrospun scaffolds composed of polylactic acid and collagen integrated with hydroxyapatite (MHAP) or amorphous calcium phosphate (MACP). In addition, the in vitro biocompatibility, osteogenic differentiation, and growth factor production associated with bone repair using human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) are evaluated. The results show that the electrospun MHAP and MACP scaffolds exhibit a fibrous morphology with interconnected pores. Both scaffolds exhibit favorable biocompatibility and stimulate the proliferation and osteogenesis of hWJ-MSCs. However, cell adhesion and osteocalcin production are greater in the MACP scaffold compared to the MHAP scaffold. In addition, the MACP scaffold shows significant production of bone-repair-related growth factors such as transforming growth factor-beta 1 (TGF-ß1), providing a solid basis for its use in bone tissue engineering.

3.
Stem Cell Res Ther ; 14(1): 306, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880776

RESUMO

BACKGROUND: Skin tissue engineering is a rapidly evolving field of research that effectively combines stem cells and biological scaffolds to replace damaged tissues. Human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) are essential to generate tissue constructs, due to their potent immunomodulatory effects and release of paracrine factors for tissue repair. Here, we investigated whether hWJ-MSC grown on human acellular dermal matrix (hADM) scaffolds and exposed to a proinflammatory environment maintain their ability to produce in vitro growth factors involved in skin injury repair and promote in vivo wound healing. METHODS: We developed a novel method involving physicochemical and enzymatic treatment of cadaveric human skin to obtain hADM scaffold. Subsequently, skin bioengineered constructs were generated by seeding hWJ-MSCs on the hADM scaffold (construct 1) and coating it with human platelet lysate clot (hPL) (construct 2). Either construct 1 or 2 were then incubated with proinflammatory cytokines (IL-1α, IL-1ß, IL-6, TNF-α) for 12, 24, 48, 72 and 96 h. Supernatants from treated and untreated constructs and hWJ-MSCs on tissue culture plate (TCP) were collected, and concentration of the following growth factors, bFGF, EGF, HGF, PDGF, VEGF and Angiopoietin-I, was determined by immunoassay. We also asked whether hWJ-MSCs in the construct 1 have potential toward epithelial differentiation after being cultured in an epithelial induction stimulus using an air-liquid system. Immunostaining was used to analyze the synthesis of epithelial markers such as filaggrin, involucrin, plakoglobin and the mesenchymal marker vimentin. Finally, we evaluated the in vivo potential of hADM and construct 1 in a porcine full-thickness excisional wound model. RESULTS: We obtained and characterized the hADM and confirmed the viability of hWJ-MSCs on the scaffold. In both constructs without proinflammatory treatment, we reported high bFGF production. In contrast, the levels of other growth factors were similar to the control (hWJ-MSC/TCP) with or without proinflammatory treatment. Except for PDGF in the stimulated group. These results indicated that the hADM scaffold maintained or enhanced the production of these bioactive molecules by hWJ-MSCs. On the other hand, increased expression of filaggrin, involucrin, and plakoglobin and decreased expression of vimentin were observed in constructs cultured in an air-liquid system. In vivo experiments demonstrated the potential of both hADM and hADM/hWJ-MSCs constructs to repair skin wounds with the formation of stratified epithelium, basement membrane and dermal papillae, improving the appearance of the repaired tissue. CONCLUSIONS: hADM is viable to fabricate a tissue construct with hWJ-MSCs able to promote the in vitro synthesis of growth factors and differentiation of these cells toward epithelial lineage, as well as, promote in a full-thickness skin injury the new tissue formation. These results indicate that hADM 3D architecture and its natural composition improved or maintained the cell function supporting the potential therapeutic use of this matrix or the construct for wound repair and providing an effective tissue engineering strategy for skin repair.


Assuntos
Derme Acelular , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Animais , Suínos , Proteínas Filagrinas , Vimentina/metabolismo , Derme Acelular/metabolismo , gama Catenina/metabolismo , gama Catenina/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
4.
Front Med (Lausanne) ; 10: 1121020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873868

RESUMO

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a membrane receptor that plays a key role in development. It is highly expressed during the embryonic stage and relatively low in some normal adult tissues. Malignancies such as leukemia, lymphoma, and some solid tumors overexpress ROR1, making it a promising target for cancer treatment. Moreover, immunotherapy with autologous T-cells engineered to express a ROR1-specific chimeric antigen receptor (ROR1 CAR-T cells) has emerged as a personalized therapeutic option for patients with tumor recurrence after conventional treatments. However, tumor cell heterogeneity and tumor microenvironment (TME) hinder successful clinical outcomes. This review briefly describes the biological functions of ROR1 and its relevance as a tumor therapeutic target, as well as the architecture, activity, evaluation, and safety of some ROR1 CAR-T cells used in basic research and clinical trials. Finally, the feasibility of applying the ROR1 CAR-T cell strategy in combination with therapies targeting other tumor antigens or with inhibitors that prevent tumor antigenic escape is also discussed. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT02706392.

5.
BMC Infect Dis ; 22(1): 575, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761219

RESUMO

BACKGROUND: Convalescent plasma (CP) has been widely used to treat COVID-19 and is under study. However, the variability in the current clinical trials has averted its wide use in the current pandemic. We aimed to evaluate the safety and efficacy of CP in severe coronavirus disease 2019 (COVID-19) in the early stages of the disease. METHODS: A randomized controlled clinical study was conducted on 101 patients admitted to the hospital with confirmed severe COVID-19. Most participants had less than 14 days from symptoms onset and less than seven days from hospitalization. Fifty patients were assigned to receive CP plus standard therapy (ST), and 51 were assigned to receive ST alone. Participants in the CP arm received two doses of 250 mL each, transfused 24 h apart. All transfused plasma was obtained from "super donors" that fulfilled the following criteria: titers of anti-SARS-CoV-2 S1 IgG ≥ 1:3200 and IgA ≥ 1:800 antibodies. The effect of transfused anti-IFN antibodies and the SARS-CoV-2 variants at the entry of the study on the overall CP efficacy was evaluated. The primary outcomes were the reduction in viral load and the increase in IgG and IgA antibodies at 28 days of follow-up. The per-protocol analysis included 91 patients. RESULTS: An early but transient increase in IgG anti-S1-SARS-CoV-2 antibody levels at day 4 post-transfusion was observed (Estimated difference [ED], - 1.36; 95% CI, - 2.33 to - 0.39; P = 0.04). However, CP was not associated with viral load reduction in any of the points evaluated. Analysis of secondary outcomes revealed that those patients in the CP arm disclosed a shorter time to discharge (ED adjusted for mortality, 3.1 days; 95% CI, 0.20 to 5.94; P = 0.0361) or a reduction of 2 points on the WHO scale when compared with the ST group (HR adjusted for mortality, 1.6; 95% CI, 1.03 to 2.5; P = 0.0376). There were no benefits from CP on the rates of intensive care unit admission (HR, 0.82; 95% CI, 0.35 to 1.9; P = 0.6399), mechanical ventilation (HR, 0.66; 95% CI, 0.25 to 1.7; P = 0.4039), or mortality (HR, 3.2; 95% CI, 0.64 to 16; P = 0.1584). Anti-IFN antibodies and SARS-CoV-2 variants did not influence these results. CONCLUSION: CP was not associated with viral load reduction, despite the early increase in IgG anti-SARS-CoV-2 antibodies. However, CP is safe and could be a therapeutic option to reduce the hospital length of stay. Trial registration NCT04332835.


Assuntos
COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Anticorpos Antivirais , Betacoronavirus , COVID-19/terapia , Humanos , Imunização Passiva , Imunoglobulina A , Imunoglobulina G/uso terapêutico , SARS-CoV-2 , Resultado do Tratamento , Soroterapia para COVID-19
6.
Front Immunol ; 13: 878209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572525

RESUMO

Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.


Assuntos
Recidiva Local de Neoplasia , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Ativação Linfocitária , Microambiente Tumoral
8.
HLA ; 99(6): 654-655, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34978763

RESUMO

HLA-DRB1*04:315 differs from HLA-DRB1*04:07:01:02 by a single nucleotide substitution in codon 147 of exon 3.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Éxons/genética , Cadeias HLA-DRB1/genética , Humanos
9.
HLA ; 99(6): 659-660, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35080137

RESUMO

Identification of a novel null allele, HLA-DRB1*13:298N, resulting from a deletion of two nucleotides.


Assuntos
Nucleotídeos , Irmãos , Alelos , Colômbia , Cadeias HLA-DRB1/genética , Humanos
10.
HLA ; 99(4): 405-407, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951145

RESUMO

HLA-DRB1*14:02:09 differs from HLA-DRB1*14:02:01:02 by a single nucleotide substitution in codon 169 of exon 3.


Assuntos
Doadores de Tecidos , Alelos , Colômbia , Éxons/genética , Cadeias HLA-DRB1/genética , Humanos
12.
Front Immunol ; 13: 1057657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700199

RESUMO

The HLA compatibility continues to be the main limitation when finding compatible donors, especially if an identical match is not found within the patient's family group. The creation of bone marrow registries allowed a therapeutic option by identifying 10/10 compatible unrelated donors (URD). However, the availability and frequency of haplotypes and HLA alleles are different among ethnic groups and geographical areas, increasing the difficulty of finding identical matches in international registries. In this study, the HLA-A, -B, -C, -DRB1, and -DQB1 loci of 1763 donors registered in the Colombian Bone Marrow Registry were typed by next-generation sequencing. A total of 52 HLA-A, 111 HLA-B, 41 HLA-C, 47 HLA-DRB1, and 20 HLA-DQB1 alleles were identified. The 3 most frequent alleles for each loci were A*24:02g (20,8%), A*02:01g (16,1%), A*01:01g (7.06%); B*35:43g (7.69%), B*40:02g (7.18%), B*44:03g (6.07%); C*04:01g (15.40%), C*01:02g (10.49%), C*07:02g (10.44%); DRB1*04:07g (11.03%), DRB1*07:01g (9.78%), DRB1*08:02g (6.72%); DQB1*03:02g (20.96%), DQB1*03:01g (17.78%) and DQB1*02:01g (16.05%). A total of 497 HLA-A-C-B-DRB1-DQB1 haplotypes were observed with a frequency greater than or equal to 0.05% (> 0.05%); the haplotypes with the highest frequency were A*24:02g~B*35:43g~C*01:02g~DQB1*03:02g~DRB1*04:07g (3.34%), A*29:02g~B*44:03g~C*16:01g~DQB1*02:01g~DRB1*07:01g (2.04%), and A*01:01g~B*08:01g~C*07:01g~DQB1*02:01g~DRB1*03:01g (1.83%). This data will allow the new Colombian Bone Marrow Donor Registry to assess the genetic heterogeneity of the Colombian population and serve as a tool of interest for future searches of unrelated donors in the country.


Assuntos
Medula Óssea , Antígenos HLA-C , Humanos , Antígenos HLA-C/genética , Haplótipos , Cadeias HLA-DRB1/genética , Frequência do Gene , Alelos , Colômbia , Antígenos HLA-B/genética , Doadores não Relacionados , Antígenos HLA-A/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sistema de Registros , Células-Tronco
13.
BMC Infect Dis ; 21(1): 1170, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800996

RESUMO

BACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.


Assuntos
COVID-19 , COVID-19/terapia , Humanos , Imunização Passiva , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento , Soroterapia para COVID-19
16.
J Autoimmun ; 118: 102598, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33524876

RESUMO

Convalescent plasma (CP) has emerged as a treatment for COVID-19. However, the composition and mechanism of action are not fully known. Therefore, we undertook a two-phase controlled study in which, first the immunological and metabolomic status of recovered and severe patients were evaluated. Secondly, the 28-day effect of CP on the immune response in severe patients was assessed. Nineteen recovered COVID-19 patients, 18 hospitalized patients with severe disease, and 16 pre-pandemic controls were included. Patients with severe disease were treated with CP transfusion and standard therapy (i.e., plasma recipients, n = 9) or standard therapy alone (n = 9). Clinical and biological assessments were done on day 0 and during follow-up on days 4, 7, 14, and 28. Clinical parameters, viral load, total immunoglobulin (Ig) G and IgA anti-S1-SARS-CoV-2 antibodies, neutralizing antibodies (NAbs), autoantibodies, cytokines, T and B cells, and metabolomic and lipidomic profiles were examined. Total IgG and IgA anti-S1-SARS-CoV-2 antibodies were key factors for CP selection and correlated with NAbs. In severe COVID-19 patients, mostly interleukin (IL)-6 (P = <0.0001), IL-10 (P = <0.0001), IP-10 (P = <0.0001), fatty acyls and glycerophospholipids were higher than in recovered patients. Latent autoimmunity and anti-IFN-α antibodies were observed in both recovered and severe patients. COVID-19 CP induced an early but transient cytokine profile modification and increases IgG anti-S1-SARS-CoV-2 antibodies. At day 28 post-transfusion, a decrease in activated, effector and effector memory CD4+ (P < 0.05) and activated and effector CD8+ (P < 0.01) T cells and naïve B cells (P = 0.001), and an increase in non-classical memory B cells (P=<0.0001) and central memory CD4+ T cells (P = 0.0252) were observed. Moreover, IL-6/IFN-γ (P = 0.0089) and IL-6/IL-10 (P = 0.0180) ratios decreased in plasma recipients compared to those who received standard therapy alone. These results may have therapeutic implications and justify further post-COVID-19 studies.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/terapia , Interleucina-10/sangue , Interleucina-6/sangue , SARS-CoV-2 , Adulto , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , COVID-19/sangue , Feminino , Humanos , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Soroterapia para COVID-19
17.
Front Immunol ; 11: 575488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117373

RESUMO

Mesenchymal stromal cells (MSC) have been used in over 800 clinical trials with encouraging results in the field of transplant medicine and chronic inflammatory diseases. Today, Umbilical Cord (UC)-derived MSC are the second leading source used for clinical purposes, mainly due to its easy access and superior immune modulatory effects. Although the underlying molecular mechanisms of immune suppressive activities have not been fully understood, research over the last decade strongly suggests that MSC-mediated benefits are closely related to activation of secretome networks. Nevertheless, recent findings also point to cytokine-independent mechanisms as key players of MSC-mediated immune modulation. Here, we set up a robust in vitro immune assay using phytohemagglutinin- or anti-CD3/CD28-treated human peripheral blood mononuclear cells in cell-to-cell interaction or in cell-contact independent format with UC-MSC and conducted integrated transcriptome and secretome analyses to dissect molecular pathways driving UC-MSC-mediated immune modulation. Under inflammatory stimuli, multiparametric analyses of the secretome led us to identify cytokine/chemokine expression patterns associated with the induction of MSC-reprogrammed macrophages and T cell subsets ultimately leading to immune suppression. UC-MSC transcriptome analysis under inflammatory challenge allowed the identification of 47 differentially expressed genes, including chemokines, anti- and pro-inflammatory cytokines and adhesion molecules found also in UC-MSC-immunosupressive secretomes, including the novel candidate soluble IL-2R. This study enabled us to track functionally activated UC-MSC during immune suppression and opened an opportunity to explore new pathways involved in immunity control by UC-MSC. We propose that identified immunomodulatory molecules and pathways could potentially be translated into clinical settings in order to improve UC-MSC-therapy quality and efficacy.


Assuntos
Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Linfócitos T/metabolismo , Transcriptoma , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Sangue Fetal/citologia , Redes Reguladoras de Genes , Humanos , Inflamação/genética , Inflamação/imunologia , Ativação Linfocitária , Células-Tronco Mesenquimais/imunologia , Fenótipo , Via Secretória , Transdução de Sinais , Linfócitos T/imunologia
18.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877987

RESUMO

Manufacturing of mesenchymal stromal cell (MSC)-based therapies for regenerative medicine requires the use of suitable supply of growth factors that enhance proliferation, cell stability and potency during cell expansion. Human blood derivatives such as human platelet lysate (hPL) have emerged as a feasible alternative for cell growth supplement. Nevertheless, composition and functional characterization of hPL in the context of cell manufacturing is still under investigation, particularly regarding the content and function of pro-survival and pro-regenerative factors. We performed comparative analyses of hPL, human serum (hS) and fetal bovine serum (FBS) stability and potency to support Wharton's jelly (WJ) MSC production. We demonstrated that hPL displayed low inter-batch variation and unique secretome profile that was not present in hS and FBS. Importantly, hPL-derived factors including PDGF family, EGF, TGF-alpha, angiogenin and RANTES were actively taken up by WJ-MSC to support efficient expansion. Moreover, hPL but not hS or FBS induced secretion of osteoprotegerin, HGF, IL-6 and GRO-alpha by WJ-MSC during the expansion phase. Thus, hPL is a suitable source of factors supporting viability, stability and potency of WJ-MSC and therefore constitutes an essential raw material that in combination with WJ-MSC introduces a great opportunity for the generation of potent regenerative medicine products.


Assuntos
Plaquetas/metabolismo , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Geleia de Wharton/metabolismo
19.
Pharmaceutics ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971730

RESUMO

Mesenchymal stromal cells (MSC) derived from human umbilical cord Wharton's jelly (WJ) have a wide therapeutic potential in cell therapy and tissue engineering because of their multipotential capacity, which can be reinforced through gene therapy in order to modulate specific responses. However, reported methodologies to transfect WJ-MSC using cationic polymers are scarce. Here, WJ-MSC were transfected using 25 kDa branched- polyethylenimine (PEI) and a DNA plasmid encoding GFP. PEI/plasmid complexes were characterized to establish the best transfection efficiencies with lowest toxicity. Expression of MSC-related cell surface markers was evaluated. Likewise, immunomodulatory activity and multipotential capacity of transfected WJ-MSC were assessed by CD2/CD3/CD28-activated peripheral blood mononuclear cells (PBMC) cocultures and osteogenic and adipogenic differentiation assays, respectively. An association between cell number, PEI and DNA content, and transfection efficiency was observed. The highest transfection efficiency (15.3 ± 8.6%) at the lowest toxicity was achieved using 2 ng/µL DNA and 3.6 ng/µL PEI with 45,000 WJ-MSC in a 24-well plate format (200 µL). Under these conditions, there was no significant difference between the expression of MSC-identity markers, inhibitory effect on CD3+ T lymphocytes proliferation and osteogenic/adipogenic differentiation ability of transfected WJ-MSC, as compared with non-transfected cells. These results suggest that the functional properties of WJ-MSC were not altered after optimized transfection with PEI.

20.
Autoimmun Rev ; 19(7): 102554, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32380316

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Betacoronavirus , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/imunologia , Humanos , Imunização Passiva , Linfócitos/imunologia , Pandemias , Pneumonia Viral/imunologia , Estudos Retrospectivos , SARS-CoV-2 , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...