Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35560217

RESUMO

Placental insufficiency (PI) lowers fetal oxygen and glucose concentrations, which disrupts glucose-insulin homeostasis and promotes fetal growth restriction (FGR). To date, prenatal treatments for FGR have not attempted to correct the oxygen and glucose supply simultaneously. Therefore, we investigated whether a 5-day correction of oxygen and glucose concentrations in PI-FGR fetuses would normalize insulin secretion and glucose metabolism. Experiments were performed in near-term FGR fetal sheep with maternal hyperthermia-induced PI. Fetal arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction and glucose was infused into FGR fetuses (FGR-OG). FGR-OG fetuses were compared with maternal air insufflated, saline-infused fetuses (FGR-AS) and control fetuses. Prior to treatment, FGR fetuses were hypoxemic and hypoglycemic and had reduced glucose-stimulated insulin secretion (GSIS). During treatment, oxygen, glucose, and insulin concentrations increased, and norepinephrine concentrations decreased in FGR-OG fetuses, whereas FGR-AS fetuses were unaffected. On treatment day 4, glucose fluxes were measured with euglycemic and hyperinsulinemic-euglycemic clamps. During both clamps, rates of glucose utilization and production were greater in FGR-AS than FGR-OG fetuses, while glucose fluxes in FGR-OG fetuses were not different than control rates. After 5 days of treatment, GSIS increased in FGR-OG fetuses to control levels and their ex vivo islet GSIS was greater than FGR-AS islets. Despite normalization in fetal characteristics, GSIS, and glucose fluxes, FGR-OG and FGR-AS fetuses weighed less than controls. These findings show that sustained, simultaneous correction of oxygen and glucose normalized GSIS and whole-body glucose fluxes in PI-FGR fetuses after the onset of FGR.


Assuntos
Glucose , Oxigênio , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Oxigênio/metabolismo , Placenta/metabolismo , Gravidez , Ovinos
2.
J Endocrinol ; 249(3): 195-207, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33994373

RESUMO

Fetuses with intrauterine growth restriction (IUGR) have high concentrations of catecholamines, which lowers the insulin secretion and glucose uptake. Here, we studied the effect of hypercatecholaminemia on glucose metabolism in sheep fetuses with placental insufficiency-induced IUGR. Norepinephrine concentrations are elevated throughout late gestation in IUGR fetuses but not in IUGR fetuses with a bilateral adrenal demedullation (IAD) at 0.65 of gestation. Euglycemic (EC) and hyperinsulinemic-euglycemic (HEC) clamps were performed in control, intact-IUGR, and IAD fetuses at 0.87 of gestation. Compared to controls, basal oxygen, glucose, and insulin concentrations were lower in IUGR groups. Norepinephrine concentrations were five-fold higher in IUGR fetuses than in IAD fetuses. During the EC, rates of glucose entry (GER, umbilical + exogenous), glucose utilization (GUR), and glucose oxidation (GOR) were greater in IUGR groups than in controls. In IUGR and IAD fetuses with euglycemia and euinsulinemia, glucose production rates (GPR) remained elevated. During the HEC, GER and GOR were not different among groups. In IUGR and IAD fetuses, GURs were 40% greater than in controls, which paralleled the sustained GPR despite hyperinsulinemia. Glucose-stimulated insulin concentrations were augmented in IAD fetuses compared to IUGR fetuses. Fetal weights were not different between IUGR groups but were less than controls. Regardless of norepinephrine concentrations, IUGR fetuses not only develop greater peripheral insulin sensitivity for glucose utilization but also develop hepatic insulin resistance because GPR was maintained and unaffected by euglycemia or hyperinsulinemia. These findings show that adaptation in glucose metabolism of IUGR fetuses are independent of catecholamines, which implicate that hypoxemia and hypoglycemia cause the metabolic responses.


Assuntos
Catecolaminas/metabolismo , Retardo do Crescimento Fetal/veterinária , Glucose/metabolismo , Norepinefrina/metabolismo , Glândulas Suprarrenais/patologia , Animais , Transporte Biológico , Glicemia , Catecolaminas/sangue , Feminino , Desenvolvimento Fetal , Feto , Norepinefrina/sangue , Insuficiência Placentária/metabolismo , Gravidez , Ovinos
3.
Trop Anim Health Prod ; 52(6): 3457-3466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32939704

RESUMO

Sheep production in desert environments during summer is challenging due to heat stress which reduces feed intake, growth, and fertility. Despite warm conditions, some ewes are able to maintain a normal performance suggesting the existence of genetic bases underlying heat tolerance. Our objective was to discover and validate genetic markers associated with thermo-tolerance in pregnant ewes exposed to warm environmental conditions. Using a well-defined model laboratory of heat stress in sheep, pregnant Columbia-Rambouillet crossbred ewes (n = 100) were examined. Following acclimation to the laboratory at thermo-neutral conditions, heat stress was induced in ewes by increasing the temperature-humidity index in a control environmental chamber during mid-gestation. Feed intake, water consumption, and rectal temperature were recorded daily and used to establish the heat stress tolerance index (HSTI) for each ewe. Rectal temperature was a predictor (P < 0.05) of feed intake, and the regression coefficient was used to classify the HSTI. In a subset of 24 ewes, a genome-wide association study (GWAS) was performed using the Illumina OvineSNP50 BeadChip. Single-marker analysis detected 3 intragenic SNPs associated with HSTI (P value = 10-5). Bayesian multi-marker approach discovered 26 chromosomal regions across the genome which accounted for 9.8% of the variation associated with HSTI. In an independent sheep population (n = 42), the three discovered SNPs were validated as molecular markers associated with thermo-tolerance phenotypic traits. These SNPs were located within the genes F13A1, PAM, and PRELID2. In conclusion, three SNPs appear to be novel molecular markers associated with heat stress tolerance in pregnant ewes providing new knowledge about genetic foundations of thermo-tolerance.


Assuntos
Marcadores Genéticos/fisiologia , Resposta ao Choque Térmico/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Carneiro Doméstico/fisiologia , Animais , Arizona , Feminino , Estudo de Associação Genômica Ampla/veterinária , Temperatura Alta , Gravidez , Carneiro Doméstico/genética , Termotolerância/genética
4.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R255-R263, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667834

RESUMO

Fetal conditions associated with placental insufficiency and intrauterine growth restriction (IUGR) chronically elevate plasma norepinephrine (NE) concentrations. Our objective was to evaluate the effects of chronically elevated NE on insulin-stimulated glucose metabolism in normally grown, non-IUGR fetal sheep, which are independent of other IUGR-related reductions in nutrients and oxygen availability. After surgical placement of catheters, near-term fetuses received either a saline (control) or NE intravenous infusion with controlled euglycemia. In NE fetuses, plasma NE concentrations were 5.5-fold greater than controls, and fetal euglycemia was maintained with a maternal insulin infusion. Insulin secretion was blunted in NE fetuses during an intravenous glucose tolerance test. Weight-specific fluxes for glucose were measured during a euinsulinemic-euglycemic clamp (EEC) and a hyperinsulinemic-euglycemic clamp (HEC). Plasma glucose and insulin concentrations were not different between groups within each clamp, but insulin concentrations increased 10-fold between the EEC and the HEC. During the EEC, rates of glucose uptake (umbilical uptake + exogenous infusion) and glucose utilization were 47% and 35% lower (P < 0.05) in NE fetuses compared with controls. During the HEC, rates of glucose uptake were 28% lower (P < 0.05) in NE fetuses than controls. Glucose production was undetectable in either group, and glucose oxidation was unaffected by the NE infusion. These findings indicate that chronic exposure to high plasma NE concentrations lowers rates of net glucose uptake in the fetus without affecting glucose oxidation rates or initiating endogenous glucose production. Lower fetal glucose uptake was independent of insulin, which indicates insulin resistance as a consequence of chronically elevated NE.


Assuntos
Glicemia/metabolismo , Feto/metabolismo , Norepinefrina/sangue , Insuficiência Placentária/metabolismo , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Insulina/sangue , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Gravidez , Ovinos
5.
Am J Physiol Endocrinol Metab ; 319(1): E67-E80, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396498

RESUMO

Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower hindlimb oxygen consumption rates (OCRs), indicating depressed mitochondrial oxidative phosphorylation capacity in their skeletal muscle. We hypothesized that OCRs are lower in skeletal muscle mitochondria from IUGR fetuses, due to reduced electron transport chain (ETC) activity and lower abundances of tricarboxylic acid (TCA) cycle enzymes. IUGR sheep fetuses (n = 12) were created with mid-gestation maternal hyperthermia and compared with control fetuses (n = 12). At 132 ± 1 days of gestation, biceps femoris muscles were collected, and the mitochondria were isolated. Mitochondria from IUGR muscle have 47% lower State 3 (Complex I-dependent) OCRs than controls, whereas State 4 (proton leak) OCRs were not different between groups. Furthermore, Complex I, but not Complex II or IV, enzymatic activity was lower in IUGR fetuses compared with controls. Proteomic analysis (n = 6/group) identified 160 differentially expressed proteins between groups, with 107 upregulated and 53 downregulated mitochondria proteins in IUGR fetuses compared with controls. Although no differences were identified in ETC subunit protein abundances, abundances of key TCA cycle enzymes [isocitrate dehydrogenase (NAD+) 3 noncatalytic subunit ß (IDH3B), succinate-CoA ligase ADP-forming subunit-ß (SUCLA2), and oxoglutarate dehydrogenase (OGDH)] were lower in IUGR mitochondria. IUGR mitochondria had a greater abundance of a hypoxia-inducible protein, NADH dehydrogenase 1α subcomplex 4-like 2, which is known to incorporate into Complex I and lower Complex I-mediated NADH oxidation. Our findings show that mitochondria from IUGR skeletal muscle adapt to hypoxemia and hypoglycemia by lowering Complex I activity and TCA cycle enzyme concentrations, which together, act to lower OCR and NADH production/oxidation in IUGR skeletal muscle.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Retardo do Crescimento Fetal/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Regulação para Baixo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Retardo do Crescimento Fetal/enzimologia , Músculos Isquiossurais/enzimologia , Músculos Isquiossurais/metabolismo , Hipoglicemia/enzimologia , Hipoglicemia/metabolismo , Hipóxia/enzimologia , Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias Musculares/enzimologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Insuficiência Placentária/enzimologia , Insuficiência Placentária/metabolismo , Gravidez , Proteômica , Ovinos , Succinato-CoA Ligases/metabolismo , Regulação para Cima
6.
J Physiol ; 597(24): 5835-5858, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665811

RESUMO

KEY POINTS: Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole-body glucose clearance is normal, 1-month-old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose-stimulated insulin secretion in IUGR lambs is due to lower intra-islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) ß2 desensitization by administering oral ADRß modifiers for the first month after birth to activate ADRß2 and antagonize ADRß1/3. In IUGR lambs ADRß2 activation increased whole-body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose-stimulated insulin secretion and insulin-stimulated glucose oxidation, providing new insights into potential mechanisms for this risk. ABSTRACT: Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated ß adrenergic receptor (ADRß) desensitization. Our objectives were to measure insulin-sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRß2 agonist and ADRß1/ß3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose-stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR-AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole-body GUR were not different from controls. Of importance, ADRß2 stimulation with ß1/ß3 inhibition increases both insulin sensitivity and whole-body glucose utilization in IUGR lambs. In IUGR and IUGR-AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR-AR skeletal muscle than in controls but GLUT1 was greater in IUGR-AR. ADRß2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR-AR lambs heart rates were greater, which was independent of cardiac ADRß1 activation. We conclude that targeted ADRß2 stimulation improved whole-body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch-up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes.


Assuntos
Retardo do Crescimento Fetal/tratamento farmacológico , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Antagonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 2/farmacocinética , Antagonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Animais , Atenolol/administração & dosagem , Atenolol/farmacologia , Atenolol/uso terapêutico , Células Cultivadas , Clembuterol/administração & dosagem , Clembuterol/farmacologia , Clembuterol/uso terapêutico , Feminino , Retardo do Crescimento Fetal/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Ovinos
7.
Am J Physiol Regul Integr Comp Physiol ; 317(4): R513-R520, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314546

RESUMO

Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower fractional rates of glucose oxidation and greater gluconeogenesis, indicating lactate shuttling between skeletal muscle and liver. Suppression of pyruvate dehydrogenase (PDH) activity was proposed because of greater pyruvate dehydrogenase kinase (PDK) 4 and PDK1 mRNA concentrations in IUGR muscle. Although PDK1 and PDK4 inhibit PDH activity to reduce pyruvate metabolism, PDH protein concentrations and activity have not been examined in skeletal muscle from IUGR fetuses. Therefore, we evaluated the protein concentrations and activity of PDH and the kinases and phosphatases that regulate PDH phosphorylation status in the semitendinosus muscle from placenta insufficiency-induced IUGR sheep fetuses and control fetuses. Immunoblots were performed for PDH, phosphorylated PDH (E1α), PDK1, PDK4, and pyruvate dehydrogenase phosphatase 1 and 2 (PDP1 and PDP2, respectively). Additionally, the PDH, lactate dehydrogenase (LDH), and citrate synthase (CS) enzymatic activities were measured. Phosphorylated PDH concentrations were 28% lower (P < 0.01) and PDH activity was 67% greater (P < 0.01) in IUGR fetal muscle compared with control. PDK1, PDK4, PDP1, PDP2, and PDH concentrations were not different between groups. CS and LDH activities were also unaffected. Contrary to the previous speculation, PDH activity was greater in skeletal muscle from IUGR fetuses, which parallels lower phosphorylated PDH. Therefore, greater expression of PDK1 and PDK4 mRNA did not translate to greater PDK1 or PDK4 protein concentrations or inhibition of PDH as proposed. Instead, these findings show greater PDH activity in IUGR fetal muscle, which indicates that alternative regulatory mechanisms are responsible for lower pyruvate catabolism.


Assuntos
Complexo Piruvato Desidrogenase/metabolismo , Ovinos/crescimento & desenvolvimento , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Gravidez , Complexo Piruvato Desidrogenase/genética , RNA Mensageiro
8.
Transplantation ; 103(1): 160-167, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30095738

RESUMO

BACKGROUND: All human islets used in research and for the clinical treatment of diabetes are subject to ischemic damage during pancreas procurement, preservation, and islet isolation. A major factor influencing islet function is exposure of pancreata to cold ischemia during unavoidable windows of preservation by static cold storage (SCS). Improved preservation methods may prevent this functional deterioration. In the present study, we investigated whether pancreas preservation by gaseous oxygen perfusion (persufflation) better preserved islet function versus SCS. METHODS: Human pancreata were preserved by SCS or by persufflation in combination with SCS. Islets were subsequently isolated, and preparations in each group matched for SCS or total preservation time were compared using dynamic glucose-stimulated insulin secretion as a measure of ß-cell function and RNA sequencing to elucidate transcriptomic changes. RESULTS: Persufflated pancreata had reduced SCS time, which resulted in islets with higher glucose-stimulated insulin secretion compared to islets from SCS only pancreata. RNA sequencing of islets from persufflated pancreata identified reduced inflammatory and greater metabolic gene expression, consistent with expectations of reducing cold ischemic exposure. Portions of these transcriptional responses were not associated with time spent in SCS and were attributable to pancreatic reoxygenation. Furthermore, persufflation extended the total preservation time by 50% without any detectable decline in islet function or viability. CONCLUSIONS: These data demonstrate that pancreas preservation by persufflation rather than SCS before islet isolation reduces inflammatory responses and promotes metabolic pathways in human islets, which results in improved ß cell function.


Assuntos
Temperatura Baixa , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Preservação de Órgãos/métodos , Oxigênio/farmacologia , Perfusão/métodos , Adolescente , Adulto , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Preservação de Órgãos/efeitos adversos , Via Secretória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Coleta de Tecidos e Órgãos , Adulto Jovem
9.
Mol Cell Endocrinol ; 473: 136-145, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360563

RESUMO

Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in ß-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in ß-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Colforsina/farmacologia , Epinefrina/farmacologia , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteômica , Ratos Sprague-Dawley
10.
Anim Reprod ; 15(Suppl 1): 886-898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-36249845

RESUMO

In ruminants, prolonged exposure to high ambient temperatures negatively affects placental development and function. The pursuing limitations in placental oxygen and nutrient supply between the mother and fetus slow fetal growth lowering birth weights and postnatal performance. The pregnant ewe is a long-standing animal model for the study of maternal- fetal interactions and is susceptible to naturally occurring heat stress, which causes fetal growth restriction. In the pregnant ewe, studies show that the fetus adapts to hyperthermia-induced placental insufficiency to preserve placental transport capacity of oxygen and nutrients. These adaptive responses are at the expense of normal fetal development and growth. Enlarged transplacental gradient for oxygen and glucose facilitates diffusion across the placenta, but develops by lowering fetal blood oxygen and glucose concentrations. Fetal hypoxemia and hypoglycemia slow growth and alter their metabolic and endocrine profiles. Deficits in amino acids transport across the placenta are present but are overcome by reduced fetal clearance rates, likely due to fetal hypoxemia or endocrine responses to hypoxic stress. Here, we provide an overview of the performance limitations observed in ruminants exposed to heat stress during pregnancy, but we focus our presentation on the sheep fetus in pregnancies complicated by hyperthermia-induced placental insufficiency. We define the characteristics of placental dysfunction observed in the fetus of heat stressed ewes during pregnancy and present developmental adaptations in organogenesis, metabolism, and endocrinology that are proposed to establish maladaptive situations reaching far beyond the perinatal period.

11.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R101-R109, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490449

RESUMO

Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and ß-cell mass were not different, indicating that IUGR ß-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants.


Assuntos
Glicemia/metabolismo , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Resistência à Insulina , Insulina/metabolismo , Insuficiência Placentária/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Secreção de Insulina , Masculino , Gravidez , Ovinos
12.
Endocrinology ; 158(4): 743-755, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28200173

RESUMO

The risk of type 2 diabetes is increased in children and adults who exhibited fetal growth restriction. Placental insufficiency and intrauterine growth restriction (IUGR) are common obstetrical complications associated with fetal hypoglycemia and hypoxia that reduce the ß-cell mass and insulin secretion. In the present study, we have defined the underlying mechanisms of reduced growth and proliferation, impaired metabolism, and defective insulin secretion previously established as complications in islets from IUGR fetuses. In an IUGR sheep model that recapitulates human IUGR, high-throughput RNA sequencing showed the transcriptome of islets isolated from IUGR and control sheep fetuses and identified the transcripts that underlie ß-cell dysfunction. Functional analysis expanded mechanisms involved in reduced proliferation and dysregulated metabolism that include specific cell cycle regulators and growth factors and mitochondrial, antioxidant, and exocytotic genes. These data also identified immune responses, wnt signaling, adaptive stress responses, and the proteasome as mechanisms of ß-cell dysfunction. The reduction of immune-related gene expression did not reflect a change in macrophage density within IUGR islets. The present study reports the islet transcriptome in fetal sheep and established processes that limit insulin secretion and ß-cell growth in fetuses with IUGR, which could explain the susceptibility to premature islet failure in adulthood. Islet dysfunction formed by intrauterine growth restriction increases the risk for diabetes.


Assuntos
Imunidade Adaptativa/fisiologia , Retardo do Crescimento Fetal/imunologia , Ilhotas Pancreáticas/imunologia , Insuficiência Placentária/imunologia , Animais , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Feto , Ilhotas Pancreáticas/metabolismo , Insuficiência Placentária/genética , Insuficiência Placentária/metabolismo , Gravidez , Análise de Sequência de RNA , Ovinos , Transdução de Sinais/fisiologia , Transcriptoma
13.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1020-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053651

RESUMO

Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P < 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9-fold greater (P < 0.05) plasma norepinephrine and ∼53% lower (P < 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P < 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P < 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P < 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Resistência à Insulina , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Atrofia Muscular/patologia , Animais , Feminino , Feto/metabolismo , Feto/patologia , Membro Posterior/patologia , Membro Posterior/fisiopatologia , Insulina/metabolismo , Masculino , Atrofia Muscular/metabolismo , Ovinos , Nascimento a Termo
14.
Endocrinology ; 157(5): 2104-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26937714

RESUMO

In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on ß-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of ß-cell responsiveness in IUGR fetuses.


Assuntos
Medula Suprarrenal/cirurgia , Retardo do Crescimento Fetal/sangue , Insuficiência Placentária/sangue , Animais , Feminino , Peso Fetal/efeitos dos fármacos , Feto/efeitos dos fármacos , Glucose/farmacologia , Insulina/sangue , Oxigênio/farmacologia , Oxigenoterapia , Gravidez , Ovinos
15.
Anim Reprod Sci ; 153: 13-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25578503

RESUMO

Previously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation and vascularity following supplementation with melatonin or maternal nutrient restriction. For the first experiment, 31 primiparous ewes were supplemented with 5mg of melatonin per day (MEL) or no melatonin (CON) and allocated to receive 100% (adequate fed; ADQ) or 60% (restricted; RES) of their nutrient requirements from day 50 to 130 of gestation. To examine melatonin receptor dependent effects, a second experiment was designed utilizing 14 primiparous ewes infused with vehicle, melatonin, or luzindole (melatonin receptor 1 and 2 antagonist) from day 62 to 90 of gestation. For experiment 1, caruncle concentrations of RNA were increased in MEL-RES compared to CON-RES. Caruncle capillary area density and average capillary cross-sectional area were decreased in MEL-RES compared to CON-RES. Cotyledon vascularity was not different across dietary treatments. For experiment 2, placental cellular proliferation and vascularity were not affected by infusion treatment. In summary, melatonin interacted with nutrient restriction to alter caruncle vascularity and RNA concentrations during late pregnancy. Although melatonin receptor antagonism alters feto-placental blood flow, these receptor dependent responses were not observed in placental vascularity. Moreover, placental vascularity measures do not fully explain the alterations in uteroplacental blood flow.


Assuntos
Privação de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição Materna , Melatonina/farmacologia , Placenta/irrigação sanguínea , Placenta/citologia , Prenhez , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Restrição Calórica/veterinária , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Feminino , Antagonistas de Hormônios/farmacologia , Placenta/efeitos dos fármacos , Gravidez , Prenhez/efeitos dos fármacos , Receptores de Melatonina/antagonistas & inibidores
16.
Biol Reprod ; 89(2): 40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23782836

RESUMO

Dietary melatonin supplementation from mid- to late gestation increases umbilical artery blood flow and causes disproportionate fetal growth. Melatonin receptors have been described throughout the cardiovascular system; however, there is a paucity of data on the function of placental melatonin receptors. The objectives of the current experiment were to determine fetal descending aorta blood flow, umbilical artery blood flow, and placental and fetal development following a 4-wk uterine infusion of melatonin (MEL), melatonin receptor 1 and 2 antagonist (luzindole; LUZ), or vehicle (CON) from Day 62 to Day 90 of gestation. After 4 wk of infusion, umbilical artery blood flow and umbilical artery blood flow relative to placentome weight were increased (P < 0.05) in MEL- versus CON- and LUZ-infused dams. Fetal descending aorta blood flow was increased (P < 0.05) in MEL- versus CON- and LUZ-infused dams, while fetal descending aorta blood flow relative to fetal weight was increased in MEL- versus CON-infused dams and decreased in LUZ- versus CON-infused dams. Following the 4-wk infusion, we observed an increase in placental efficiency (fetal-placentome weight ratio) in MEL- versus LUZ-infused dams. The increase in umbilical artery blood flow due to chronic uterine melatonin infusion is potentiated by an increased fetal cardiac output through the descending aorta. Moreover, melatonin receptor antagonism decreased fetal descending aorta blood flow relative to fetal weight. Therefore, melatonin receptor activation may partially mediate the observed increase in fetal blood flow following dietary melatonin supplementation.


Assuntos
Hemodinâmica/efeitos dos fármacos , Melatonina/farmacologia , Placenta/efeitos dos fármacos , Receptores de Melatonina/antagonistas & inibidores , Fluxo Sanguíneo Regional/efeitos dos fármacos , Triptaminas/farmacologia , Animais , Feminino , Feto/irrigação sanguínea , Placenta/irrigação sanguínea , Gravidez , Fluxo Sanguíneo Regional/fisiologia , Ovinos , Artérias Umbilicais/efeitos dos fármacos , Artérias Umbilicais/fisiologia , Útero/irrigação sanguínea , Útero/efeitos dos fármacos
17.
Reproduction ; 144(1): 23-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22514269

RESUMO

To investigate the effects of maternal selenium (Se) supplementation and nutritional intake during gestation on hormone changes, percentage body weight (BW) change, and organ mass in neonatal lambs, ewes were allocated to differing Se levels (adequate Se (ASe, 11.5 µg/kg BW) or high Se (HSe, 77.0 µg/kg BW)) initiated at breeding and nutritional intake (60% (RES), 100% (CON), or 140% (HIGH) of NRC requirements) initiated at day 40 of gestation. At parturition, all lambs were removed from dams, fed common diets, and BW and blood samples were collected until day 19. There was a Se × nutritional intake × day interaction for percentage BW change from birth. Lambs born to ASe-HIGH ewes tended to have decreased BW change compared with ASe-CON and ASe-RES groups on day 7. Lambs from HSe-HIGH ewes tended to have increased BW change compared with HSe-RES and HSe-CON groups from days 7 to 19. At birth, there was a Se × sex of offspring interaction, in which male lambs from HSe ewes had decreased cortisol concentrations compared with all other lambs. By 24 h, lambs from RES ewes had decreased cortisol compared with those from HIGH ewes, with lambs from CON ewes being intermediate. Lambs from RES- and CON-fed ewes had greater thyroxine than HIGH ewes at 24 h. Organ masses on day 19 were mainly impacted by maternal nutritional intake and sex of the offspring. Birth weight alone did not predict growth performance during neonatal life. Moreover, despite a similar postnatal diet, maternal nutritional plane and Se status did impact neonatal endocrine profiles. Exact mechanisms of how neonatal endocrine status can influence later growth and development need to be determined.


Assuntos
Animais Recém-Nascidos/sangue , Animais Recém-Nascidos/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Selênio/administração & dosagem , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso ao Nascer , Peso Corporal , Suplementos Nutricionais , Feminino , Hidrocortisona/sangue , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Tiroxina/sangue , Tri-Iodotironina/sangue
18.
Am J Physiol Regul Integr Comp Physiol ; 302(4): R454-67, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22129617

RESUMO

Using a mid- to late-gestation ovine model of intrauterine growth restriction (IUGR), we examined uteroplacental blood flow and fetal growth during melatonin supplementation as a 2 × 2 factorial design. At day 50 of gestation, 32 ewes were supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and were allocated to receive 100% [adequate; (ADQ)] or 60% [restricted (RES)] of nutrient requirements until day 130 of gestation. Umbilical artery blood flow was increased from day 60 to day 110 of gestation in MEL vs. CON dams, while umbilical artery blood flow was decreased from day 80 to day 110 of gestation in RES vs. ADQ dams. At day 130 of gestation, uteroplacental hemodynamics, measured under general anesthesia, and fetal growth were evaluated. Uterine artery blood flow was decreased in RES vs. ADQ dams, while melatonin supplementation did not affect uterine artery blood flow. Total placentome weight and placentome number were not different between treatment groups. Fetal weight was decreased by nutrient restriction. Abdominal girth and ponderal index were increased in fetuses from MEL-ADQ dams vs. all other groups. Fetal biparietal distance was decreased in CON-RES vs. CON-ADQ dams, while melatonin supplementation rescued fetal biparietal distance. Fetal kidney length and width were increased by maternal melatonin treatment. Fetal cardiomyocyte area was altered by both maternal melatonin treatment and nutritional plane. In summary, melatonin may negate the consequences of IUGR during specific abnormalities in umbilical blood flow as long as sufficient uterine blood perfusion is maintained during pregnancy.


Assuntos
Antioxidantes/uso terapêutico , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/tratamento farmacológico , Melatonina/uso terapêutico , Circulação Placentária/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Miócitos Cardíacos/efeitos dos fármacos , Necessidades Nutricionais , Placentação , Gravidez , Ovinos , Artéria Uterina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...