Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(12): 254, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318350

RESUMO

This article describes the consolidation effects of bacterial biopolymers synthesized by biofilm bacteria colonizing Mayan limestone buildings on the surface properties of limestone blocks, including disaggregation, hardness, and total color change at the laboratory level. The biopolymers evaluated, produced by bacterial isolates TM1B-488, TM1B-489, TM1B-349, and TM1B-464, influenced surface properties at different levels. 16S rRNA gene sequences analysis showed that isolate TM1B-349 was related with Psychrobacter sp. strain Marseille P-5312, TM1B-464 was related with Agrococcus terreus strain BT116, and isolates TM1B-488 and TM1B-489 were related with Xanthomonas citri pv. mangiferaeindicae strain XC01. Biopolymer A reduced the surface disaggregation of the material (26%) compared to the untreated control, as revealed by the peeling test, followed by biopolymer B (10%), while the remaining biopolymers had a negligible effect. The cactus biopolymer reduced disaggregation at higher levels (37%). On the other hand, there was a similar concomitant increase in surface hardness of limestone samples coated with biopolymer A (34%) and biopolymer B (32%), higher than biopolymers C (10%) and D (19%). Total color change for all treatments was below the threshold value of 5, indicating a non-significant color alteration. Partial chemical characterization of best-performing biopolymer (A) suggests its probable glycoprotein nature, whose constitutive acidic monosaccharides probably contributed to higher adherence to the limestone surfaces, contributing to surface stabilization, hardening the surface, and decreasing surface decohesion. These preliminary findings suggest its potential application in bioconsolidants, but further studies are required.


Assuntos
Bactérias , Carbonato de Cálcio , RNA Ribossômico 16S/genética , Biopolímeros/química , Biofilmes
2.
Insects ; 13(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447768

RESUMO

The black soldier fly, Hermetia illucens (BSF, Diptera: Stratiomyidae) is an insect with high protein value and a potential feed agent for animals aimed for human consumption. The growth parameters of BSF larvae reared on four substrates-restaurant-waste, fruit-waste, fish-waste, and commercial tilapia food-for 41 days before processing for inclusion into Oreochromis niloticus (Perciformes: Cichlidae, Nile tilapia) commercial fry diets at 30% (70:30) were determined. On fly larvae, the food substrate based on restaurant waste yielded the greatest larval weight and length. BSF larvae fed a fish-waste diet showed the shortest developmental time. The fruit-waste diet induced the lowest weight and length in the fly larvae/pre-pupae (immature stage). The pre-pupal protein values were similar to commercial food. On fry-fish, the diets with pre-pupae grown on fish waste showed the greatest yields regarding weight (biomass), length, and nutritional content. These results suggest the BSF has the potential to be used in fish feed and provides an alternative for commercial cultivation.

3.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806654

RESUMO

Trypanosomatids are the causative agents of leishmaniasis and trypanosomiasis, which affect about 20 million people in the world's poorest countries, leading to 95,000 deaths per year. They are often associated with malnutrition, weak immune systems, low quality housing, and population migration. They are generally recognized as neglected tropical diseases. New drugs against these parasitic protozoa are urgently needed to counteract drug resistance, toxicity, and the high cost of commercially available drugs. Microbial bioprospecting for new molecules may play a crucial role in developing a new generation of antiparasitic drugs. This article reviews the current state of the available literature on chemically defined metabolites of microbial origin that have demonstrated antitrypanosomatid activity. In this review, bacterial and fungal metabolites are presented; they originate from a range of microorganisms, including cyanobacteria, heterotrophic bacteria, and filamentous fungi. We hope to provide a useful overview for future research to identify hits that may become the lead compounds needed to accelerate the discovery of new drugs against trypanosomatids.


Assuntos
Antiprotozoários/uso terapêutico , Bactérias/química , Fungos/química , Leishmaniose/tratamento farmacológico , Trypanosomatina/fisiologia , Tripanossomíase/tratamento farmacológico , Animais , Humanos , Leishmaniose/metabolismo , Tripanossomíase/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-29439486

RESUMO

Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS) produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan); these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax) was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS) before and after sorption. The Qmax of Cd2+ was 97 mg g-1 for Microbactan and 141 mg g-1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process.


Assuntos
Biopolímeros/química , Cádmio/química , Poluentes Químicos da Água/química , Actinobacteria/metabolismo , Adsorção , Bacillus/metabolismo , Biofilmes , Biopolímeros/metabolismo , México
5.
Int J Mol Sci ; 14(9): 18959-72, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24065097

RESUMO

A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein. Microbactan emulsified aromatic hydrocarbons and oils to various extents; the highest emulsification index was recorded against motor oil (96%). The stability of the microbactan-motor oil emulsion model reached its highest level (94%) at 50 °C, pH 10 and 3.5% NaCl content. It was not toxic to Artemia salina nauplii. Microbactan is, therefore, a non-toxic and non-ionic bioemulsifier of high molecular weight with affinity for a range of oily substrates. Comparative phylogenetic assessment of the 16S rDNA gene of Microbacterium sp. MC3B-10 with genes derived from other marine Microbacterium species suggested that this genus is well represented in coastal zones. The chemical nature and stability of the bioemulsifier suggest its potential application in bioremediation of marine environments and in cosmetics.


Assuntos
Actinomycetales/metabolismo , Emulsificantes/metabolismo , Actinomycetales/classificação , Animais , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Emulsificantes/química , Emulsificantes/toxicidade , Hidrocarbonetos Aromáticos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Óleos/química , Ácido Oleico/química , Ácido Palmítico/química , Filogenia , Ácidos Esteáricos/química , Temperatura
6.
Curr Opin Biotechnol ; 21(3): 346-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20202811

RESUMO

Microbial communities are ubiquitous in marine intertidal environments. These communities, which grow preferentially as biofilms on natural and artificial surfaces, carry out key processes contributing to the functioning of coastal environments and providing valuable services to human society, including carbon cycling, primary productivity, trophic linkage, and transfer and removal of pollutants. In addition, their surface-associated life style greatly influences the integrity and performance of marine infrastructure and archaeological heritage materials. The fluctuating conditions of the intertidal zone make it an extreme environment to which intertidal biofilm organisms must adapt at varying levels. This requirement has probably favored the development and spread of specific microorganisms with particular physiological and metabolic processes. These organisms may have potential biotechnological utility, in that they may provide novel secondary metabolites, biopolymers, lipids, and enzymes and even processes for the production of energy in a sustainable manner.


Assuntos
Biologia Marinha/métodos , Biofilmes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...