Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 270: 125501, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091749

RESUMO

Biocatalytic processes play a crucial role in the valorization of lignin; therefore, methods enabling the monitoring of enzymes such as ß-etherases, capable of breaking ß-O-4 aryl-ether bonds, are of significant biotechnological interest. A novel method for quantifying ß-etherase activity was developed based on the ß-ester bond formation between a chromophore and acetovainillone. The chromogenic substrate ß-(ρ-nitrophenoxy)-α-acetovanillone (PNPAV), was chemically synthesized. Kintetic monitoring of ρ-nitrophenolate release at 410 nm over 10 min, using recombinant LigF from Sphingobium sp SYK-6, LigF-AB and LigE-AB from Althererytrobacter sp B11, yielded enzimatic activities of 404. 3 mU/mg, 72 mU/mg, and 50 mU/mg, respectively. This method is applicable in a pH range of 7.0-9.0, with a sensitivity of up to 50 ng of enzyme, exhibiting no interference with lipolytic, glycolytic, proteolytic, and oxidoreductase enzymes.


Assuntos
Compostos Cromogênicos , Sphingomonadaceae , Oxirredutases/química , Proteínas de Bactérias/química , Lignina/química
2.
Heliyon ; 9(10): e21006, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916079

RESUMO

Lignin, a complex heteropolymer present in plant cell walls, is now recognized as a valuable renewable resource with potential applications in various industries. The lignin biorefinery concept, which aims to convert lignin into value-added products, has gained significant attention in recent years. ß-etherases, enzymes that selectively cleave ß-O-4 aryl ether bonds in lignin, have shown promise in lignin depolymerization. In this study, the ß-etherase LigF from Altererythrobacter sp. B11 was cloned, expressed, purified, and biochemically characterized. The LigF-AB11 enzyme exhibited optimal activity at 32 °C and pH 8.5 when catalyzing the substrate PNP-AV. The enzyme displayed mesophilic behavior and demonstrated higher activity at moderate temperatures. Stability analysis revealed that LigF-AB11 was not thermostable, with a complete loss of activity at 60 °C within an hour. Moreover, LigF-AB11 exhibited excellent pH stability, retaining over 50 % of its activity after 1 h under pH conditions ranging from 3.0 to 11.0. Metal ions and surface impregnation agents were found to affect the enzyme's activity, highlighting the importance of considering these factors in enzymatic processes for lignin depolymerization. This study provides valuable insights into the biochemical properties of LigF-AB11 and contributes to the development of efficient enzymatic processes for lignin biorefineries. Further optimization and understanding of ß-etherases will facilitate their practical application in the valorization of lignin.

3.
Anal Methods ; 12(32): 4048-4057, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32756615

RESUMO

A continuous spectrophotometric assay for the screening of PHB depolymerase activity in microtiter plates was developed. We evaluated crystalline PHB in the suspension and coated it with the addition of a pH indicator to detect the breakage of the ester bond by proton titration. The reaction rate and the concentration of the recombinant PhaZ1 from Paucimonas lemoignei PHB depolymerase presented a linear correlation. A comparison of the proposed method with the turbidimetric method adapted to the microtiter plates revealed that the use of indicators increases the response signal by at least 5-fold, resulting in increased sensitivity and better signal-to-noise ratio. Furthermore, the proposed method offers a wide range of pH from 5.0 to 9.2 by using different buffer-indicator pairs and was employed for the screening of PHB-depolymerase activity on 140 bacterial strains isolated from Lake Chapala. Eleven strains were positive for PHB-depolymerase activity, which were ACSLRF-27, ACPLRF-6, and ACPLRF-5 (16S rRNA sequence alignment revealed 99-100% similarity with Actinomadura geliboluensis strain A8036, Streptomyces cavourensis strain NRRL 2740, and Streptomyces coelicolor strain DSM 40233, respectively); these that showed the highest activities. In conclusion, the method was successfully applied for finding new strains and for quantifying the PHB depolymerases activity with crystalline PHB.


Assuntos
Hidroxibutiratos , Poliésteres , Sequência de Aminoácidos , Burkholderiaceae , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S , Streptomyces
4.
Int Microbiol ; 23(2): 335-343, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31823203

RESUMO

Gastrointestinal lipase inhibitors are molecules of pharmaceutical interest due to their use as anti-obesity drugs. In this study, forty strains isolated from soil and sediments were identified with the ability to produce inhibition of gastrointestinal lipase activity. The biomass extract of these strains showed at least 50% inhibition in the hydrolysis of tributyrin by recombinant human pancreatic lipase (rHPL) or rabbit gastric lipase (RGL) by in vitro assays. Based on gene sequencing, the isolates were identified mainly as Streptomycetes. Moreover, none of the identified strains has been reported to be lipase inhibitor producers, so they can be viewed as potential sources for obtaining new drugs. IC50 values of the three best inhibitor extracts showed that AC104-10 was the most promising strain for production of gastrointestinal lipase inhibitors. AC104-10 shows 99% homology (16S rRNA gene fragment) to Streptomyces cinereoruber strain NBRC 12756. An inhibitory study over trypsin activity revealed that AC104-10 extract, as well as THL, had no significant effect on the activity of this protease, showing its specificity for lipases. In addition, analyzes by MALDI-TOF mass spectrometry of the enzyme-inhibitor complex revealed that there is a covalent interaction of the AC104-10 inhibitor with the catalytic serine of the pancreatic lipase, and that the molecular weight of the inhibitor is approximately 686.19 Da.


Assuntos
Sedimentos Geológicos/microbiologia , Streptomyces/isolamento & purificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Produtos Biológicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Lagos/microbiologia , Lipase/antagonistas & inibidores , Lipase/metabolismo , RNA Ribossômico 16S , Microbiologia do Solo , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA