Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159380, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591327

RESUMO

The effects of different concentrations of Hofmeister salts on the hydrolytic activity on triglycerides and the secondary structure of lipase B from Candida antarctica (CALB) were investigated. Structural changes after short- and long-time incubation at high salt concentrations were determined using circular dichroism (CD), fluorescence, and RMSD-RMSF simulations. At 5.2 M NaCl, the hydrolytic activity of CALB on tributyrin (TC4) and trioctanoin (TC8) was enhanced by 1.5 (from 817 ± 3.9 to 1228 ± 4.3 U/mg)- and 8.7 (from 25 ± 0.3 to 218 ± 2.3 U/mg)-folds compared with 0.15 M NaCl, respectively at pH 7.0 and 40 °C. An activity activation was seen with other salts tested; however, long-time incubation (24 h) did not result in retention of the activation effect for any of the salts tested. Secondary structure CD and fluorescence spectra showed that long-time incubation with NaCl, KCl, and CsCl provokes a compact structure without loss of native conformation, whereas chaotropic LiCl and CaCl2 induced an increase in the α-helical content, and kosmotropic Na2SO4 provoked a molten globule state with rich ß-sheet content. The RMSD-RMSF simulation agreed with the CD analysis, highlighting a principal salt-induced effect at the α-helix 5 region, promoting two different conformational states (open and closed) depending on the type and concentration of salt. Lastly, an increase in the interfacial tension occurred when high salt concentrations were added to the reaction media, affecting the catalytic properties. The results indicate that high-salt environments, such as 2-5.2 M NaCl, can be used to increase the lipolytic activity of CALB on TC4 and TC8.


Assuntos
Lipase , Sais , Cloreto de Sódio/farmacologia , Triglicerídeos
2.
Food Res Int ; 130: 108905, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32156360

RESUMO

The Fabaceae family of plants include a variety of seeds with multiple shapes, sizes, and colors; with a great diversity of bioactive compounds found in legume seeds. Legumes are an excellent source of protein, peptides and phytochemicals which are present in significant amounts. These bioactive compounds have been reported to reduce the risk of developing non-communicable diseases (NCD), such as obesity and type-2 diabetes. In this narrative review, we discuss the biological potential of bioactive compounds found in legumes and the health benefits associated with their consumption as an alternative approach in the management of NCD. Current extraction methods, characteristics of the bioactive compounds, and different in vitro and in vivo studies evaluating the bioactivity of legume bioactives are reviewed and discussed.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Fabaceae/metabolismo , Obesidade/prevenção & controle , Compostos Fitoquímicos/metabolismo , Proteínas de Plantas/metabolismo , Humanos
3.
Int J Biol Macromol ; 142: 152-162, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525414

RESUMO

The physicochemical characterization and emulsifying functional properties of a novel exopolysaccharide (EPS) produced by haloarchaea Haloferax mucosum (DSM 27191) were investigated. This biopolymer has a high molecular weight of 152 kDa and important protein content of 10%. Different culture media compositions were investigated taking the ATCC 2185 medium as a base and supplementing with varying concentrations of yeast extract and glucose or sucrose as carbon sources to produce the EPS in a liquid medium. The highest EPS production (7.15 ±â€¯0.44 g/L) was obtained at 96 h. EPS aqueous dispersions showed a non-Newtonian rheological behavior which was well fitted to the Cross equation. The EPS (at 0.32% w/w) was capable of stabilizing water-in-oil emulsions with different nonpolar solvents, including n-hexane, kerosene, chloroform, castor oil and mineral oil. EPS retained its emulsifying activity after to be incubated for one hour in a wide range of temperatures (25, 40, 70 and 100 °C), pH (4, 6.5, 7 and 12) and NaCl concentrations (0, 2.0 and 4.0 M). The viscoelastic behavior and stability of hexane-in-water emulsion were examined through oscillatory shear measurements.


Assuntos
Emulsões/química , Haloferax/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Biomassa , Biopolímeros/biossíntese , Biopolímeros/química , Meios de Cultura/química , Haloferax/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Peso Molecular , Reologia , Temperatura , Viscosidade
4.
Electron. j. biotechnol ; 39: 52-60, may. 2019. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1052027

RESUMO

BACKGROUND: Biologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production. RESULTS: Halophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma. Conclusion: The use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.


Assuntos
Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Peixes/metabolismo , Halobacillus/enzimologia , Solo , Bactérias/isolamento & purificação , Bolívia , Esterases , Salinidade , Hidrólise , Lipase , México , Proteínas Musculares , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...