Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 59: e23011, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505852

RESUMO

Abstract Oil-in-water photoprotective nanoemulsions (NEs) were developed using Babassu (BBS) lipophilic extract, nonionic surfactants, and low concentrations of organic sunscreens by ultrasonic processing. BBS extract was chosen due to its suitable physicochemical properties (acidity index, peroxide index, refraction index, and relative density) and predominance of saturated fatty acids, identified by gas chromatography-mass spectrometry (GC-MS), which promote biological activities and high oxidative stability. NEs were characterized by mean droplet size, morphology, polydispersity index (PdI), pH, and organoleptic properties, and the physical stability of the NEs was evaluated for 120 days at room temperature. The sun protection factor (SPF) was determined, and the photostability and in vitro cytotoxicity assays were performed for NEs. All NEs remained stable for 120 days, with a droplet size <150 nm and a monomodal distribution profile. The pH values were compatible with the skin's pH. NE3 showed a spherical morphology, with a mean droplet size of 125.15 ± 0.16 nm and PdI of 0.145 ± 0.032. NE3 containing BBS extract and sunscreens presented an SPF of 35.5 ± 3.0, was photostable after 6 h of radiation and was non-cytotoxic to fibroblast cells. Thus, NE3 could be considered a promising formulation for developing synergic plant-extract sunscreen photoprotective products for the market


Assuntos
Plantas/efeitos adversos , Protetores Solares/farmacologia , Extratos Vegetais/agonistas , Arecaceae/classificação , Gorduras Vegetais , Técnicas In Vitro/métodos , Fator de Proteção Solar/classificação , Cromatografia Gasosa-Espectrometria de Massas/métodos
2.
Braz. arch. biol. technol ; 64: e21190387, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153290

RESUMO

HIGHLIGHTS Production of lipid nanoemulsions (<100 nm) of industrial interest with low energy demand. The antioxidant properties of babassu oil have been improved and the nanoemulsions are not cytotoxic. Babassu oil is a food and medicinal product. The nanoemulsion is strategic for the developed of new antioxidants phytotherapeutics.


Abstract Background: Babassu oil is an extract from a Brazilian native coconut (Orbignya phalerata Martius) and is used both as a food and a medicinal product. Methods: we produced two babassu oil nanoemulsions and evaluated them regarding their nanoscopic stability, antioxidant activity and cytotoxicity.The nanoemulsions were characterized by Dynamic Light Scattering, and their stability was investigated for 120 days. The antioxidant activity was assessed by Spectroscopy Electron Paramagnetic Resonance, and the cytotoxicity was assessed by a colorimetric method (MTT) with the NIH/3T3 cell lineage. Results: the results showed nanoemulsions with average hydrodynamic diameter lower than 100 nm (p(0.001).and a polydispersity index of less than 0.3 (p(0.001), indicating monodisperse systems and good stability at room temperature. The exposure of nanoemulsions at varying pH revealed that the isoelectric point was at 3.0, and the images obtained by Transmission Electron Microscopy showed spherical droplets with a size 27 nm. The antioxidant activity showed that the babassu nanoemulsions exposed to free radicals had a better response when compared to the oil free samples. The cell viability assays showed low toxicity of the formulation with viability over 92% (p(0.05). Conclusion: babassu oil nanoformulations showed low polydispersity and kinetic stability with effective antioxidant action. Therefore, they can be promising for application in the food industry or as antioxidant phytotherapeutics.


Assuntos
Óleo de Palmeira/química , Nanotecnologia , Antioxidantes , Extratos Vegetais/química , Indústria Alimentícia , Citotoxinas , Microscopia Eletrônica de Transmissão , Emulsões , Nanocompostos
3.
Front Pharmacol ; 9: 1192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405413

RESUMO

Alzheimer's disease (AD) is a main cause of dementia, accounting for up to 75% of all dementia cases. Pathophysiological processes described for AD progression involve neurons and synapses degeneration, mainly characterized by cholinergic impairment. This feature makes acetylcholinesterase inhibitors (AChEi) the main class of drugs currently used for the treatment of AD dementia phase, among which galantamine is the only naturally occurring substance. However, several plant species producing diverse classes of alkaloids, coumarins, terpenes, and polyphenols have been assessed for their anti-AChE activity, becoming potential candidates for new anti-AD drugs. Therefore, this mini-review aimed to recapitulate last decade studies on the anti-AChE activity of plant species, their respective extracts, as well as isolated compounds. The anti-AChE activity of extracts prepared from 54 plant species pertaining 29 families, as well as 36 isolated compounds were classified and discussed according to their anti-AChE pharmacological potency to highlight the most prominent ones. Besides, relevant limitations, such as proper antioxidant assessment, and scarcity of toxicological and clinical studies were also discussed in order to help researchers out with the bioprospection of potentially new AChEi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...