Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2260-2268, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165403

RESUMO

In this study, we investigated the mechanical behavior of pristine copper (Cu) nanoparticles (NPs) and Cu@graphene (Cu@G) hybrid NPs using molecular dynamics simulations. The longitudinal engineering strain was calculated as a measure of compression until reaching 25% of the initial size of the NPs. The stress-strain curves revealed the elastic-to-plastic transition in the Cu NPs at a longitudinal strain of 3.57% with a yield strength of 6.15 GPa. On the other hand, the Cu@G NPs exhibited a maximum average load point at a longitudinal strain of 6.81% with a yield strength of 8.26 GPa. The hybrid Cu@G NPs showed increased strength and resistance to plastic deformation compared to the pure Cu NPs, while the calculation of the elastic modulus indicated a higher load resistance provided by the graphene coverage for the Cu@G NPs. Furthermore, the analysis of atomic configurations, dislocations, and stress distribution demonstrated that the graphene flakes play a crucial role in preventing dislocation events and faceting in the Cu@G NPs by acting as a shock absorber, distributing the applied force on themselves, and producing a more homogeneous stress distribution on the Cu NPs; additionally, they prevent the movement of Cu atoms, reducing the occurrence of dislocations and surface faceting, thanks to their supportive effect. Overall, our findings highlight the potential of hybrid nanomaterials, such as Cu@G, for enhancing the mechanical properties of metallic NPs, which could have significant implications for the development of advanced nanomaterials with improved performance in a variety of applications.

2.
ACS Mater Au ; 3(3): 177-200, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38089137

RESUMO

Due to the contamination and global warming problems, it is necessary to search for alternative environmentally friendly energy sources. In this area, hydrogen is a promising alternative. Hydrogen is even more promising, when it is obtained through water electrolysis operated with renewable energy sources. Among the possible devices to perform electrolysis, proton exchange membrane (PEM) electrolyzers appear as the most promising commercial systems for hydrogen production in the coming years. However, their massification is affected by the noble metals used as electrocatalysts in their electrodes, with high commercial value: Pt at the cathode where the hydrogen evolution reaction occurs (HER) and Ru/Ir at the anode where the oxygen evolution reaction (OER) happens. Therefore, to take full advantage of the PEM technology for green H2 production and build up a mature PEM market, it is imperative to search for more abundant, cheaper, and stable catalysts, reaching the highest possible activities at the lowest overpotential with the longest stability under the harsh acidic conditions of a PEM. In the search for new electrocatalysts and considering the predictions of a Trasatti volcano plot, rhenium appears to be a promising candidate for HER in acidic media. At the same time, recent studies provide evidence of its potential as an OER catalyst. However, some of these reports have focused on chemical and photochemical water splitting and have not always considered acidic media. This review summarizes rhenium-based electrocatalysts for water splitting under acidic conditions: i.e., potential candidates as cathode materials. In the various sections, we review the mechanism concepts of electrocatalysis, evaluation methods, and the different rhenium-based materials applied for the HER in acidic media. As rhenium is less common for the OER, we included a section about its use in chemical and photochemical water oxidation and as an electrocatalyst under basic conditions. Finally, concluding remarks and perspectives are given about rhenium for water splitting.

3.
Phys Chem Chem Phys ; 25(7): 5489-5500, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734485

RESUMO

Copper (Cu) nanofluids (NFs) have attracted attention due to their high thermal conductivity, which has conferred a wide variety of applications. However, their high reactivity favors oxidation, corrosion and aggregation, leading them to lose their properties of interest. Copper capped by graphene (Cu@G) core@shell nanoparticles (NPs) have also attracted interest from the medical and industrial sectors because graphene can shield the Cu NPs from undesired phenomena. Additionally, they share some properties that expand the range of applications of Cu NFs. In this work, new Morse potentials are reported to reproduce the behavior of Cu@G NPs through molecular dynamics. Coordination-dependent Morse parameters were fitted for C, H, and Cu based on density functional theory calculations. Then, these parameters were implemented to evaluate the thermal conductivity of Cu@G NFs employing the Green-Kubo formalism, with NPs from 1.5 to 6.1 nm at 100 to 800 K, varying the size, the number of layers and the orientation of the graphene flakes. It was found that Cu@G NFs are stable and have an improved thermal conductivity compared to the Cu NFs, being 3.7 to 18.2 times higher at 300 K with only one graphene layer and above 26.2 times higher for the graphene-trilayered NPs. These values can be higher for temperatures below 300 K. Oppositely, the size, homogeneity and orientations of the graphene flakes did not affect the thermal conductivity of the Cu@G NFs.

4.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361692

RESUMO

A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Förster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 °C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of −5.30 eV and −3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.


Assuntos
Energia Solar , Transferência Ressonante de Energia de Fluorescência , Tiofenos , Fluoresceína , Polímeros
5.
ACS Omega ; 7(3): 2583-2590, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35252636

RESUMO

Climate change is leading us to search for new materials that allow a more sustainable environmental situation in the long term. Poly(lactic acid) (PLA) has been proposed as a substitute for traditional plastics due to its high biodegradability. Various components have been added to improve their mechanical, thermal, and barrier properties. The modification of the PLA barrier properties by introducing nanoparticles with different shapes is an important aspect to control the molecular diffusion of oxygen and other gas compounds. In this work, we have described changes in oxygen diffusion by introducing nanoparticles of different shapes through molecular dynamics simulations. Our model illustrates that the existence of curved surfaces and the deposition of PLA around them by short chains generate small holes where oxygen accumulates, forming clusters and reducing their mobility. From the several considered shapes, the sphere is the most suitable structure to improve the barrier properties of the PLA.

6.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513801

RESUMO

In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs' effect and, to a lesser extent, to the cationic CPE.

7.
Polymers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575423

RESUMO

Poly[(5,5'-(2,3-bis(2-ethylhexyloxy)naphthalene-1,4-diyl)bis(thiophene-2,2'-diyl))-alt-(2,1,3-benzothiadiazole-4,7-diyl)] (PEHONDTBT) was synthesized for the first time and through direct arylation polymerization (DAP) for use as p-donor material in organic solar cells. Optimized reaction protocol leads to a donor-acceptor conjugated polymer in good yield, with less structural defects than its analog obtained from Suzuki polycondensation, and with similar or even higher molecular weight than other previously reported polymers based on the 2,3-dialkoxynaphthalene monomer. The batch-to-batch repeatability of the optimized DAP conditions for the synthesis of PEHONDTBT was proved, showing the robustness of the synthetic strategy. The structure of PEHONDTBT was corroborated by NMR, exhibiting good solubility in common organic solvents, good film-forming ability, and thermal stability. PEHONDTBT film presented an absorption band centered at 498 nm, a band gap of 2.15 eV, and HOMO and LUMO energy levels of -5.31 eV and -3.17 eV, respectively. Theoretical calculations were performed to understand the regioselectivity in the synthesis of PEHONDTBT and to rationalize its optoelectronic properties. Bilayer heterojunction organic photovoltaic devices with PEHONDTBT as the donor layer were fabricated to test their photovoltaic performance, affording low power-conversion efficiency in the preliminary studies.

8.
J Chem Inf Model ; 60(6): 2966-2976, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32402189

RESUMO

The behavior of small and intermediate generations of poly(amidoamine) (PAMAM) dendrimers and PAMAM|gold nanocomposites was studied by computational tools and experimental techniques. Molecular dynamics simulations were used to characterize at the atomic level the stabilization mechanism of gold nanoparticles by dendrimeric platforms. Low PAMAM generations create a stabilization sphere around the nanoparticle, while upper PAMAM sizes provide stabilization sites through the internal voids. These results can help in the understanding of the stabilization process of metallic nanoparticles for the design and contribution of new nanotechnological applications.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Nanopartículas , Ouro , Nanotecnologia
9.
RSC Adv ; 10(39): 23165-23172, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520353

RESUMO

The catalytic activity of nanoparticles of cobalt hydroxide supported on reduced graphene oxide, Co(OH)2|rGO, was studied for the decomposition of ammonium perchlorate (AP), the principal ingredient of composite solid propellants. Co(OH)2|rGO was synthesized by an in situ reduction method, which avoided the application of extremely high temperatures and harsh processes. rGO stabilized the nanoparticles effectively and prevented their agglomeration. The performance of Co(OH)2|rGO as a catalyst was measured by differential scanning calorimetry. Co(OH)2|rGO affected the high-temperature decomposition (HTD) of AP positively, decreasing the decomposition temperature of AP to 292 °C, and increasing the energy release to 290 J g-1. The diminution of the HTD of AP by Co(OH)2|rGO is in between the best values reported to date, suggesting its potential application as a catalyst for AP decomposition.

10.
RSC Adv ; 9(15): 8480-8489, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518654

RESUMO

The catalytic activity of graphene oxide (GO), reduced graphene oxide (rGO), copper nanoparticles (CuNP) and rGO supported copper nanoparticles (rGO|CuNP) was investigated for the thermal decomposition of ammonium perchlorate (AP). GO was synthesized using a methodology based on hydrophilic oxidation, while an environmentally friendly and non-toxic reducing agent, l-ascorbic acid, was applied for the in situ reduction of copper and GO. The supporting rGO reduced the mean size of the copper nanoparticles from approximately 6 to 2 Å due to the presence of stabilizing functional groups on the graphitic structure. Theoretical studies through Density Functional Theory revealed the important role of the epoxy and carbonyl groups of rGO on the stabilization of copper. The thermal decomposition process was studied based on DSC and TGA. GO, and rGO did not show a significant catalytic influence in the decomposition of AP. CuNP reduced the decomposition temperature of AP in greater magnitude than rGO|CuNP however, the synergistic effect of the rGO and CuNP increased the energy release significantly.

11.
ACS Omega ; 3(7): 7278-7287, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458888

RESUMO

Graphene oxide quantum dot (GOQD) and reduced GOOD (rGOQD) were synthetized using a simple and straight methodology based on an oxidative treatment and sonication. GOQD and rGOQD were used as supporting agents for the in situ generation of gold nanoparticles, avoiding the use of additional stabilizers. GOQD resulted as a better support than rGOQD because of the presence of higher functional groups that can interact with gold. Theoretical studies through density functional theory revealed the important role of the epoxy groups of GOQD on the stabilization of gold. GOQD and GOQD-Au were tested for the first time as catalysts for the decomposition of solid composite propellants. GOQD not only lowered the decomposition temperature of ammonium perchlorate (AP) but also enhanced the exothermic heat of AP, in comparison to graphene and GO. GOQD-Au increased the energy release; however, the effect on the decrease of the decomposition temperature of AP was not as significant as other previous reported catalysts.

12.
J Environ Manage ; 147: 321-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25304521

RESUMO

We present a novel, insoluble, low-generation polyamidoamine (PAMAM)-based polymer. The monomer and polymer were characterized by fourier transform infrared spectroscopy, electrospray ionization mass spectrometry and thermogravimetric measurement, revealing that G0 acryloyl-terminated PAMAM were synthesized and polymerized using ammonium persulfate as an initiator, producing a high-density PAMAM derivative (PAMAM-HD). PAMAM-HD was tested for its ability to remove Na(I), K(I), Ca(II), Mg(II), Cu(II), Mn(II), Cd(II), Pb(II) and Zn(II) ions from acidic, neutral and basic aqueous solutions. PAMAM-HD efficiently removed metals ions from all three solutions. The greatest absorption efficiency at neutral pH was observed against Cu(II), Cd(II) and Pb(II), and the experimental data were supported by the calculated Kd values. Our data could have a significant impact on water purification by providing an inexpensive and efficient polymer for the removal of metal ions.


Assuntos
Descontaminação/métodos , Poliaminas/química , Polímeros/síntese química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Íons/química , Íons/isolamento & purificação , Espectrometria de Massas , Metais/química , Metais/isolamento & purificação , Estrutura Molecular , Polímeros/química , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...