Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(19): 197001, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000439

RESUMO

The spin-orbit interaction in spin qubits enables spin-flip transitions, resulting in Rabi oscillations when an external microwave field is resonant with the qubit frequency. Here, we introduce an alternative driving mechanism mediated by the strong spin-orbit interactions in hole spin qubits, where a far-detuned oscillating field couples to the qubit phase. Phase-driving at radio frequencies, orders of magnitude slower than the microwave qubit frequency, induces highly nontrivial spin dynamics, violating the Rabi resonance condition. By using a qubit integrated in a silicon fin field-effect transistor, we demonstrate a controllable suppression of resonant Rabi oscillations and their revivals at tunable sidebands. These sidebands enable alternative qubit control schemes using global fields and local far-detuned pulses, facilitating the design of dense large-scale qubit architectures with local qubit addressability. Phase-driving also decouples Rabi oscillations from noise, an effect due to a gapped Floquet spectrum and can enable Floquet engineering high-fidelity gates in future quantum processors.

2.
Phys Rev Lett ; 127(5): 057701, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397233

RESUMO

We experimentally determine isotropic and anisotropic g-factor corrections in lateral GaAs single-electron quantum dots. We extract the Zeeman splitting by measuring the tunnel rates into the individual spin states of an empty quantum dot for an in-plane magnetic field with various strengths and directions. We quantify the Zeeman energy and find a linear dependence on the magnetic field strength that allows us to extract the g factor. The measured g factor is understood in terms of spin-orbit interaction induced isotropic and anisotropic corrections to the GaAs bulk g factor. Experimental detection and identification of minute band-structure effects in the g factor is of significance for spin qubits in GaAs quantum dots.

4.
Nat Nanotechnol ; 16(3): 308-312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432204

RESUMO

Quantum computers promise to execute complex tasks exponentially faster than any possible classical computer, and thus spur breakthroughs in quantum chemistry, material science and machine learning. However, quantum computers require fast and selective control of large numbers of individual qubits while maintaining coherence. Qubits based on hole spins in one-dimensional germanium/silicon nanostructures are predicted to experience an exceptionally strong yet electrically tunable spin-orbit interaction, which allows us to optimize qubit performance by switching between distinct modes of ultrafast manipulation, long coherence and individual addressability. Here we used millivolt gate voltage changes to tune the Rabi frequency of a hole spin qubit in a germanium/silicon nanowire from 31 to 219 MHz, its driven coherence time between 7 and 59 ns, and its Landé g-factor from 0.83 to 1.27. We thus demonstrated spin-orbit switch functionality, with on/off ratios of roughly seven, which could be further increased through improved gate design. Finally, we used this control to optimize our qubit further and approach the strong driving regime, with spin-flipping times as short as ~1 ns.

5.
Phys Rev Lett ; 122(20): 207701, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172765

RESUMO

We show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic oscillator potential. The spectroscopy is used to validate shape manipulation with gate voltages, agreeing with expectations from the gate layout. Our measurements demonstrate a versatile tool for quantum dots with one dominant axis of strong confinement.

6.
Nat Commun ; 9(1): 3454, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150721

RESUMO

Understanding and control of the spin relaxation time T1 is among the key challenges for spin-based qubits. A larger T1 is generally favored, setting the fundamental upper limit to the qubit coherence and spin readout fidelity. In GaAs quantum dots at low temperatures and high in-plane magnetic fields B, the spin relaxation relies on phonon emission and spin-orbit coupling. The characteristic dependence T1 ∝ B-5 and pronounced B-field anisotropy were already confirmed experimentally. However, it has also been predicted 15 years ago that at low enough fields, the spin-orbit interaction is replaced by the coupling to the nuclear spins, where the relaxation becomes isotropic, and the scaling changes to T1 ∝ B-3. Here, we establish these predictions experimentally, by measuring T1 over an unprecedented range of magnetic fields-made possible by lower temperature-and report a maximum T1 = 57 ± 15 s at the lowest fields, setting a record electron spin lifetime in a nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...