Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751732

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. METHODS: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. RESULTS: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. CONCLUSION: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.


Assuntos
Alanina/administração & dosagem , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Condicionamento Físico Animal/fisiologia , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Isoleucina/administração & dosagem , Leucina/administração & dosagem , Camundongos , Modelos Animais , Fadiga Muscular/efeitos dos fármacos , Proteínas Musculares/metabolismo , Estudo de Prova de Conceito , Valina/administração & dosagem
2.
Front Pharmacol ; 8: 787, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167640

RESUMO

Medication with neuroleptics has been associated with adipose tissue dysfunctions and, in particular, with increased visceral fat amount. However, several studies suggested that antipsychotic treatment might not be the main responsible of fat mass accumulation, as this has been also described in not treated psychotic patients. One of the most used "drug-free" rodent models of psychosis is the social isolation rearing of young adult rats, which provides a non-pharmacologic method of inducing long-term alterations reminiscent of symptoms seen in psychotic patients. Recent data highlighted a crucial role of redox imbalance in adipose tissue dysfunctions, in terms of decreased antioxidant defense and increased reactive oxygen species (ROS). Here, we investigated possible oxidative stress-related biomolecular alterations associated with visceral fat increase in 7 week isolated rats. To this purpose, we quantified total and visceral fat amount by using dual-energy X-ray (DEXA) absorptiometry. On visceral fat, we analyzed the expression of specific ROS-producer genes (Nox1, Nox4, Hmox-1), antioxidant enzymes (Prdx1 and Ucp-1) and oxidative stress-induced damage markers (Cidea, Slc2a4, and Acacb). The impact of oxidative stress on beta3-adrenergic receptors (Adrb3), at both mRNA and protein level, was also assessed. We found that 7 weeks of social isolation induced an increase in total and visceral fat, associated with a decrease in Prdx1 (mRNA and protein) as well as Ucp-1 mRNA levels and an enhanced expression of Nox1 (mRNA and protein) and Hmox-1 mRNA. No differences were detected in Nox4 mRNA levels between grouped and isolated animals. Elevations in Cidea, Slc2a4, and Acacb expression in visceral fat of isolated animals accounted for oxidative stress-related damage in this tissue, further associated with a significant increase in Adrb3 mRNA and protein. Our results provide a novel understanding of the pathological link existing among psychosocial stress-induced psychosis, adipose tissue dysfunctions and redox imbalance, opening new therapeutic perspectives for the treatment of alterations in peripheral tissues associated with this mental disorder.

3.
Front Pharmacol ; 8: 500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798690

RESUMO

Statin therapy may induce skeletal muscle damage ranging from myalgia to severe rhabdomyolysis. Our previous preclinical studies showed that statin treatment in rats involves the reduction of skeletal muscle ClC-1 chloride channel expression and related chloride conductance (gCl). An increase of the activity of protein kinase C theta (PKC theta) isoform, able to inactivate ClC-1, may contribute to destabilize sarcolemma excitability. These effects can be detrimental for muscle function leading to drug-induced myopathy. Our goal is to study the causes of statin-induced muscle side effects in patients at the aim to identify biological markers useful to prevent and counteract statin-induced muscle damage. We examined 10 patients, who experienced myalgia and hyper-CK-emia after starting statin therapy compared to 9 non-myopathic subjects not using lipid-lowering drugs. Western Blot (WB) analysis showed a 40% reduction of ClC-1 protein and increased expression of phosphorylated PKC in muscle biopsies of statin-treated patients with respect to untreated subjects, independently from their age and statin type. Real-time PCR analysis showed that despite reduction of the protein, the ClC-1 mRNA was not significantly changed, suggesting post-transcriptional modification. The mRNA expression of a series of genes was also evaluated. MuRF-1 was increased in accord with muscle atrophy, MEF-2, calcineurin (CN) and GLUT-4 transporter were reduced, suggesting altered transcription, alteration of glucose homeostasis and energy deficit. Accordingly, the phosphorylated form of AMPK, measured by WB, was increased, suggesting cytoprotective process activation. In parallel, mRNA expression of Notch-1, involved in muscle cell proliferation, was highly expressed in statin-treated patients, indicating active regeneration. Also, PGC-1-alpha and isocitrate-dehydrogenase increased expression together with increased activity of mitochondrial citrate-synthase, measured by spectrophotometric assay, suggests mitochondrial biogenesis. Thus, the reduction of ClC-1 protein and consequent sarcolemma hyperexcitability together with energy deficiency appear to be among the most important alterations to be associated with statin-related risk of myopathy in humans. Thus, it may be important to avoid statin treatment in pathologies characterized by energy deficit and chloride channel malfunction. This study validates the measure of ClC-1 expression as a reliable clinical test for assessing statin-dependent risk of myopathy.

4.
Front Pharmacol ; 7: 121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242528

RESUMO

In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

5.
Front Physiol ; 7: 167, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242541

RESUMO

The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

6.
Neuromolecular Med ; 17(3): 285-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007199

RESUMO

Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker's disease) or dominant (Thomsen's disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.


Assuntos
Canais de Cloreto/genética , Miotonia Congênita/genética , Mutação Puntual , Adulto , Linhagem Celular , Canais de Cloreto/química , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Consanguinidade , Sequência Conservada , Éxons/genética , Feminino , Genes Recessivos , Estudos de Associação Genética , Humanos , Ativação do Canal Iônico , Masculino , Músculo Esquelético/patologia , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Adulto Jovem
7.
Am J Pathol ; 184(10): 2803-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25084345

RESUMO

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.


Assuntos
Cálcio/metabolismo , Hipertensão/fisiopatologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Animais , Cafeína/metabolismo , Cálcio/análise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Homeostase , Humanos , Masculino , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Fenótipo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
8.
Biochem Pharmacol ; 91(2): 266-75, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24998494

RESUMO

We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.


Assuntos
Atrofia Muscular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Estaurosporina/farmacologia , Receptores de Sulfonilureias/metabolismo , Animais , Diazóxido/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Músculo Esquelético/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética
9.
PLoS One ; 8(6): e65167, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755187

RESUMO

Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations.


Assuntos
Membro Posterior/fisiopatologia , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Cadeias Leves de Miosina/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Animais , Comportamento Animal , Fenômenos Bioquímicos , Peso Corporal , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos Transgênicos , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ratos , Descanso , Suporte de Carga
10.
PLoS One ; 7(3): e33232, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470446

RESUMO

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.


Assuntos
Adaptação Fisiológica , Músculo Esquelético/metabolismo , Ausência de Peso , Animais , Regulação para Baixo , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Voo Espacial , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
11.
Amino Acids ; 43(1): 431-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21986958

RESUMO

Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5 g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.


Assuntos
Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Taurina/farmacologia , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Masculino , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/biossíntese , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Taurina/administração & dosagem , Taurina/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/biossíntese
12.
J Hypertens ; 30(1): 153-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080226

RESUMO

OBJECTIVE: The human kidney-specific chloride channels ClC-Ka (rodent ClC-K1) and ClC-Kb (rodent ClC-K2) are important determinants of renal function, participating to urine concentration and blood pressure regulation mechanisms. Here we tested the hypothesis that these chloride channels could represent new drug targets for inducing diuretic and antihypertensive effects. METHODS: To this purpose, the CLC-K blockers benzofuran derivatives MT-189 and RT-93 (10, 50, 100 mg/kg), were acutely administered by gavage in Wistar rats, and pharmacodynamic and pharmacokinetic parameters determined by functional, bioanalytical, biochemical and molecular biology assays. RESULTS: Plasma concentration values for MT-189 and RT-93 were indicative of good bioavailability. Both MT-189 and RT-93 dose-dependently increased urine volume without affecting electrolyte balance. A comparable reduction of SBP was observed in rats after MT-189, RT-93 or furosemide administration. Benzofuran derivatives treatment did not affect kidney CLC-K mRNA level or inner medulla osmolality, whereas a significant vasopressin-independent down-regulation of aquaporin water channel type 2 was observed at protein and transcriptional levels. In rats treated with benzofuran derivatives, the observed polyuria was mainly water diuresis; this finding indirectly supports a cross-talk between chloride and water transport in nephron. Moreover, preliminary in-vitro evaluation of the drugs capability to cross the blood-inner ear barrier suggests that these compounds have a limited ability to induce potential auditory side effects. CONCLUSION: CLC-K blockers may represent a new class of drugs for the treatment of conditions associated with expanded extracellular volume, with a hopeful high therapeutic potential for hypertensive patients carrying ClC-K gain-of-function polymorphisms.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Diurese , Hipertensão/fisiopatologia , Animais , Pressão Sanguínea , Western Blotting , Hipertensão/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Água
13.
Pharmacol Res ; 61(6): 553-63, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20116431

RESUMO

Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox. After HU, atrophy was more pronounced in the slow-twitch soleus muscle (Sol) than in the fast-twitch gastrocnemius and tibialis anterior muscles, and was absent in extensor digitorum longus muscle. In accord with the phenotype transition, HU Sol showed a reduced expression of myosin heavy chain type 2A (MHC-2A) and increase in MHC-2X and MHC-2B isoforms. In parallel, HU Sol displayed an increased sarcolemma chloride conductance related to an increased expression of ClC-1 channels, changes in excitability parameters, a positive shift of the mechanical threshold, and a decrease of the resting cytosolic calcium concentration. Moreover, the level of lipoperoxidation increased proportionally to the degree of atrophy of each muscle type. As expected, trolox treatment fully prevented oxidative stress in HU mice. Atrophy was not prevented but the drug significantly attenuated Sol phenotypic transition and excitability changes. Trolox treatment had no effect on control mice. These results suggest possible benefits of antioxidants in protecting muscle against disuse.


Assuntos
Antioxidantes/uso terapêutico , Cromanos/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/tratamento farmacológico , Animais , Cálcio/metabolismo , Canais de Cloreto/genética , Elevação dos Membros Posteriores , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Musculares Atróficos/patologia , RNA Mensageiro/genética , Sarcolema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...