Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Nutrients ; 16(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732628

RESUMO

Community screening for sarcopenia is complex, with barriers including access to specialized equipment and trained staff to conduct body composition, strength and function assessment. In the current study, self-reported dietary protein intake and physical activity (PA) in adults ≥65 years was assessed relative to sarcopenia risk, as determined by body composition, strength and physical function assessments, consistent with the European Working Group on Sarcopenia in Older People (EWGSOP) definition. Of those screened (n = 632), 92 participants (77% female) were assessed as being at high risk of developing sarcopenia on the basis of dietary protein intake ≤1 g∙kg-1∙day-1 [0.9 (0.7-0.9) g∙kg-1∙day-1] and moderate intensity physical activity <150 min.week-1. A further 31 participants (65% female) were defined as being at low risk, with both protein intake [1.2 (1.1-1.5) g∙kg-1∙day-1] and PA greater than the cut-off values. High-risk participants had reduced % lean mass [53.5 (7.8)% versus 54.8 (6.1)%, p < 0.001] and impaired strength and physical function. Notably, high-risk females exhibited greater deficits in lean mass and strength, with minimal differences between groups for males. In community-dwelling older adults, self-reported low protein intake and low weekly PA is associated with heightened risk for sarcopenia, particularly in older women. Future research should determine whether early intervention in older adults with low protein intake and PA attenuates functional decline.


Assuntos
Proteínas Alimentares , Exercício Físico , Vida Independente , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Feminino , Masculino , Idoso , Proteínas Alimentares/administração & dosagem , Composição Corporal , Fatores de Risco , Idoso de 80 Anos ou mais , Força Muscular , Avaliação Geriátrica/métodos , Autorrelato
2.
J Nutr ; 153(12): 3529-3542, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863266

RESUMO

BACKGROUND: Vitamin B inadequacies and elevated homocysteine status have been associated with impaired cognitive and cardiometabolic health with aging. There is, however, a scarcity of research investigating integrated profiles of one-carbon (1C) metabolites in this context, including metabolites of interconnected folate, methionine, choline oxidation, and transsulfuration pathways. OBJECTIVES: The study aimed to examine associations between vitamins B and 1C metabolites with cardiometabolic health and cognitive function in healthy older adults, including the interactive effects of Apolipoprotein E-ε4 status. METHODS: Three hundred and thirteen healthy participants (65-74 y, 65% female) were analyzed. Vitamins B were estimated according to dietary intake (4-d food records) and biochemical status (serum folate and vitamin B12). Fasting plasma 1C metabolites were quantified by liquid chromatography with tandem mass spectrometry. Measures of cardiometabolic health included biochemical (lipid panel, blood glucose) and anthropometric markers. Cognitive function was assessed by the Computerized Mental Performance Assessment System (COMPASS) and Montreal Cognitive Assessment (MoCA). Associations were analyzed using multivariate linear (COMPASS, cardiometabolic health) and Poisson (MoCA) regression modeling. RESULTS: Over 90% of participants met dietary recommendations for riboflavin and vitamins B6 and B12, but only 78% of males and 67% of females achieved adequate folate intakes. Higher serum folate and plasma betaine and glycine concentrations were associated with favorable cardiometabolic markers, whereas higher plasma choline and homocysteine concentrations were associated with greater cardiometabolic risk based on body mass index and serum lipids concentration values (P< 0.05). Vitamins B and homocysteine were not associated with cognitive performance in this cohort, though higher glycine concentrations were associated with better global cognitive performance (P = 0.017), episodic memory (P = 0.016), and spatial memory (P = 0.027) scores. Apolipoprotein E-ε4 status did not modify the relationship between vitamins B or 1C metabolites with cognitive function in linear regression analyses. CONCLUSIONS: Vitamin B and 1C metabolite profiles showed divergent associations with cardiometabolic risk markers and limited associations with cognitive performance in this cohort of healthy older adults.


Assuntos
Doenças Cardiovasculares , Complexo Vitamínico B , Masculino , Humanos , Feminino , Idoso , Nova Zelândia , Ácido Fólico , Vitamina B 12 , Cognição , Colina/farmacologia , Glicina/farmacologia , Homocisteína , Apolipoproteínas
3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762694

RESUMO

Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.

4.
Physiol Rep ; 11(15): e15784, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549955

RESUMO

Cold water immersion (CWI) following intense exercise is a common athletic recovery practice. However, CWI impacts muscle adaptations to exercise training, with attenuated muscle hypertrophy and increased angiogenesis. Tissue temperature modulates the abundance of specific miRNA species and thus CWI may affect muscle adaptations via modulating miRNA expression following a bout of exercise. The current study focused on the regulatory mechanisms involved in cleavage and nuclear export of mature miRNA, including DROSHA, EXPORTIN-5, and DICER. Muscle biopsies were obtained from the vastus lateralis of young males (n = 9) at rest and at 2, 4, and 48 h of recovery from an acute bout of resistance exercise, followed by either 10 min of active recovery (ACT) at ambient temperature or CWI at 10°C. The abundance of key miRNA species in the regulation of intracellular anabolic signaling (miR-1 and miR-133a) and angiogenesis (miR-15a and miR-126) were measured, along with several gene targets implicated in satellite cell dynamics (NCAM and PAX7) and angiogenesis (VEGF and SPRED-1). When compared to ACT, CWI suppressed mRNA expression of DROSHA (24 h p = 0.025 and 48 h p = 0.017), EXPORTIN-5 (24 h p = 0.008), and DICER (24 h p = 0.0034). Of the analyzed miRNA species, miR-133a (24 h p < 0.001 and 48 h p = 0.007) and miR-126 (24 h p < 0.001 and 48 h p < 0.001) remained elevated at 24 h post-exercise in the CWI trial only. Potential gene targets of these miRNA, however, did not differ between trials. CWI may therefore impact miRNA abundance in skeletal muscle, although the precise physiological relevance needs further investigation.


Assuntos
MicroRNAs , Treinamento Resistido , Humanos , Masculino , MicroRNAs/genética , Transporte Ativo do Núcleo Celular , Imersão , Temperatura Baixa , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Água , Carioferinas
5.
Front Nutr ; 10: 1174726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388633

RESUMO

Background: Flexitarian, vegetarian and exclusively plant-based diets are increasingly popular, particularly amongst young adults. This is the first randomised dietary intervention to investigate the health, wellbeing, and behavioural implications of consuming a basal vegetarian diet that additionally includes low-to-moderate amounts of red meat (flexitarian) compared to one containing plant-based meat alternatives (PBMAs, vegetarian) in young adults (ClinicalTrials.gov NCT04869163). The objective for the current analysis is to measure adherence to the intervention, nutrition behaviours, and participants' experience with their allocated dietary group. Methods: Eighty healthy young adults participated in this 10-week dietary intervention as household pairs. Household pairs were randomised to receive either approximately three serves of red meat (average of 390 g cooked weight per individual, flexitarian group) or PBMAs (350-400 g per individual, vegetarian group) per week on top of a basal vegetarian diet. Participants were supported to adopt healthy eating behaviours, and this intervention was developed and implemented using a behaviour change framework. Adherence (eating allocated red meat or PBMA, abstaining from animal-based foods not provided by researchers) was continuously monitored, with total scores calculated at the end of the 10-week intervention period. Eating experiences were measured by the Positive Eating Scale and a purpose-designed exit survey, and a food frequency questionnaire measured dietary intake. Analyses used mixed effects modeling taking household clustering into account. Results: The total average adherence score was 91.5 (SD = 9.0) out of a possible 100, with participants in the flexitarian group scoring higher (96.1, SD = 4.6, compared to 86.7, SD = 10.0; p < 0.001). Those receiving red meat were generally more satisfied with this allocation compared to those receiving the PBMAs, even though a leading motivation for participants joining the study was an opportunity to try plant-based eating (35% expressed that their interest in taking part was related to trying plant-based eating). Participants in both intervention groups had increased vegetable intake (p < 0.001), and reported more positive eating experiences (p = 0.020) and satisfaction with eating (p = 0.021) at the end of the 10-week intervention relative to baseline values. Conclusion: Methods to encourage engagement with the trial were successful, as participants demonstrated excellent adherence to the intervention. Observed differences in participants' adherence and experiences between flexitarian and vegetarian groups holds implications for the adoption of healthy, sustainable dietary patterns beyond this study alone.

6.
Sci Rep ; 13(1): 9879, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336921

RESUMO

Understanding the genetic risk and mechanisms through which SARS-CoV-2 infection outcomes and comorbidities interact to impact acute and long-term sequelae is essential if we are to reduce the ongoing health burdens of the COVID-19 pandemic. Here we use a de novo protein diffusion network analysis coupled with tissue-specific gene regulatory networks, to examine putative mechanisms for associations between SARS-CoV-2 infection outcomes and comorbidities. Our approach identifies a shared genetic aetiology and molecular mechanisms for known and previously unknown comorbidities of SARS-CoV-2 infection outcomes. Additionally, genomic variants, genes and biological pathways that provide putative causal mechanisms connecting inherited risk factors for SARS-CoV-2 infection and coronary artery disease and Parkinson's disease are identified for the first time. Our findings provide an in depth understanding of genetic impacts on traits that collectively alter an individual's predisposition to acute and post-acute SARS-CoV-2 infection outcomes. The existence of complex inter-relationships between the comorbidities we identify raises the possibility of a much greater post-acute burden arising from SARS-CoV-2 infection if this genetic predisposition is realised.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Fatores de Risco , Comorbidade
7.
Nutrients ; 15(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242207

RESUMO

BACKGROUND: ß-cryptoxanthin is a dietary carotenoid for which there have been few studies on the safety and pharmacokinetics following daily oral supplementation. METHODS: 90 healthy Asian women between 21 and 35 years were randomized into three groups: 3 and 6 mg/day oral ß-cryptoxanthin, and placebo. At 2, 4, and 8 weeks of supplementation, plasma carotenoid levels were measured. The effects of ß-cryptoxanthin on blood retinoid-dependent gene expression, mood, physical activity and sleep, metabolic parameters, and fecal microbial composition were investigated. RESULTS: ß-cryptoxanthin supplementation for 8 weeks (3 and 6 mg/day) was found to be safe and well tolerated. Plasma ß-cryptoxanthin concentration was significantly higher in the 6 mg/day group (9.0 ± 4.1 µmol/L) compared to 3 mg/day group (6.0 ± 2.6 µmol/L) (p < 0.03), and placebo (0.4 ± 0.1 µmol/L) (p < 0.001) after 8 weeks. Plasma all-trans retinol, α-cryptoxanthin, α-carotene, ß-carotene, lycopene, lutein, and zeaxanthin levels were not significantly changed. No effects were found on blood retinol-dependent gene expression, mood, physical activity and sleep, metabolic parameters, and fecal microbial composition. CONCLUSIONS: Oral ß-cryptoxanthin supplementation over 8 weeks lead to high plasma concentrations of ß-cryptoxanthin, with no impact on other carotenoids, and was well tolerated in healthy women.


Assuntos
beta-Criptoxantina , Vitamina A , Humanos , Feminino , Carotenoides , beta Caroteno , Luteína , Zeaxantinas , Suplementos Nutricionais
8.
Eur J Nutr ; 62(5): 2257-2267, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37085625

RESUMO

BACKGROUND: Metabolomic dysregulation following a meal in overweight individuals with the Metabolic Syndrome (MetS) involves multiple pathways of nutrient storage and oxidation. OBJECTIVE: The aim of the current study was to perform an acute cross-over intervention to examine the interactive actions of meal glycaemic load (GL) on the dynamic responses of the plasma metabolome in overweight females. METHODS: Postmenopausal women [63 ± 1.23y; Healthy (n = 20) and MetS (n = 20)] ingested two differing high-carbohydrate test meals (73 g carbohydrate; 51% energy) composed of either low glycemic index (LGI) or high (HGI) foods in a randomised sequence. Plasma metabolome was analysed using liquid chromatography-mass spectrometry (LC-MS). RESULTS: In the overweight women with MetS, there were suppressed postprandial responses for several amino acids (AAs), including phenylalanine, leucine, valine, and tryptophan, p < 0.05), irrespective of the meal type. Meal GL exerted a limited impact on the overall metabolomic response, although the postprandial levels of alanine were higher with the low GL meal and uric acid was greater following the high GL meal (p < 0.05). CONCLUSIONS: MetS participants exhibited reduced differences in the concentrations of a small set of AAs and a limited group of metabolites implicated in energy metabolism following the meals. However, the manipulation of meal GL had minimal impact on the postprandial metabolome. This study suggests that the GL of a meal is not a major determinant of postprandial response, with a greater impact exerted by the metabolic health of the individual. Trial registration Australia New Zealand Clinical Trials Registry: ACTRN12615001108505 (21/10/2015).


Assuntos
Carga Glicêmica , Sobrepeso , Feminino , Humanos , Aminoácidos , Glicemia/metabolismo , Estudos Cross-Over , Carboidratos da Dieta/metabolismo , Índice Glicêmico/fisiologia , Insulina , Refeições , Período Pós-Prandial/fisiologia
9.
J Nutr ; 153(5): 1555-1566, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963499

RESUMO

BACKGROUND: Evidence is accumulating that intake of animal-based and plant-based proteins has different effects on cardiometabolic health, but less is known about the health effect of isocaloric substitution of animal-based and plant-based proteins. Data from Asian populations are limited. OBJECTIVES: This study aimed to evaluate the effects of isocaloric substitution of total plant-based proteins for total and various animal-based protein food groups and to evaluate the effects of substituting protein from legumes and pulses for various animal-based protein food groups on cardiovascular disease (CVD) risk factors and predicted 10-y CVD risk. METHODS: We conducted a cross-sectional analysis using data collected from 9211 Singapore residents (aged 21-75 y) from the Singapore Multi-Ethnic Cohort. Data on sociodemographic and lifestyle factors were collected using questionnaires. Dietary intakes were assessed using a validated FFQ. BMI, waist circumference, and blood pressure were measured during a physical examination, and blood samples were collected to measure lipid profiles. Associations were assessed by substitution models using a multiple linear regression analysis. RESULTS: Isocaloric substitution of total plant-based proteins for total and all specific animal-based protein food groups were associated with lower BMI (ß: -0.30; 95% CI: -0.38, -0.22), waist circumference (ß: -0.85; 95% CI: -1.04, -0.66), and LDL cholesterol concentrations (ß: -0.06; 95% CI: -0.08, -0.05) (P < 0.0056). Replacement of processed meat and processed seafood proteins with total plant-based proteins was associated with improvement in most CVD risk factors and predicted 10-y CVD risk. Replacement of oily fish with legume proteins was associated with lower HDL cholesterol and higher TG concentrations. CONCLUSIONS: The substitution of plant-based proteins for animal-based proteins, especially from processed meat and processed seafood, was inversely associated with the established CVD risk factors such as BMI, waist circumference, and lipid concentrations and predicted 10-y CVD risk. These findings warrant further investigation in independent studies in other Asian populations.


Assuntos
Doenças Cardiovasculares , Proteínas de Plantas , Animais , Fatores de Risco , Fatores de Risco Cardiometabólico , Estudos Transversais , Verduras , Lipídeos , Dieta
10.
Transl Psychiatry ; 13(1): 38, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737601

RESUMO

Human brain development starts in the embryonic period. Maternal preconception nutrition and nutrient availability to the embryo may influence brain development at this critical period following conception and early cellular differentiation, thereby affecting offspring neurodevelopmental and behavioural disorder risk. However, studying this is challenging due to difficulties in characterizing preconception nutritional status and few studies have objective neurodevelopmental imaging measures in children. We investigated the associations of maternal preconception circulating blood nutrient-related biomarker mixtures (~15 weeks before conception) with child behavioural symptoms (Child Behaviour Checklist (CBCL), aged 3 years) within the Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO) study. The CBCL preschool form evaluates child behaviours based on syndrome scales and Diagnostic and Statistical Manual of Mental Disorders (DSM) oriented scales. These scales consist of internalizing problems, externalizing problems, anxiety problems, pervasive developmental problems, oppositional defiant, etc. We applied data-driven clustering and a method for modelling mixtures (Bayesian kernel machine regression, BKMR) to account for complex, non-linear dependencies between 67 biomarkers. We used effect decomposition analyses to explore the potential mediating role of neonatal (week 1) brain microstructure, specifically orientation dispersion indices (ODI) of 49 cortical and subcortical grey matter regions. We found that higher levels of a nutrient cluster including thiamine, thiamine monophosphate (TMP), pyridoxal phosphate, pyridoxic acid, and pyridoxal were associated with a higher CBCL score for internalizing problems (posterior inclusion probability (PIP) = 0.768). Specifically, thiamine independently influenced CBCL (Conditional PIP = 0.775). Higher maternal preconception thiamine level was also associated with a lower right subthalamic nucleus ODI (P-value = 0.01) while a lower right subthalamic nucleus ODI was associated with higher CBCL scores for multiple domains (P-value < 0.05). One potential mechanism is the suboptimal metabolism of free thiamine to active vitamin B1, but additional follow-up and replication studies in other cohorts are needed.


Assuntos
Sintomas Comportamentais , Mães , Feminino , Recém-Nascido , Humanos , Criança , Pré-Escolar , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Biomarcadores , Tiamina
11.
Am J Clin Nutr ; 117(5): 883-895, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781129

RESUMO

BACKGROUND: Maternal obesity during pregnancy is associated with an increased risk of obesity and metabolic disease in the offspring. Supplementation with fish oil (FO), which is insulin sensitizing, during pregnancy in mothers with overweight or obesity may prevent the development of greater adiposity and metabolic dysfunction in their children. OBJECTIVES: To determine the effects of FO supplementation throughout the second half of pregnancy and lactation in mothers with overweight or obesity on infant body composition and metabolism. METHODS: A double-blind randomized controlled trial of 6 g FO (3.55 g/d of n-3 PUFAs) compared with olive oil (control) from mid-pregnancy until 3 mo postpartum. Eligible women had singleton pregnancies at 12-20 wk of gestation, and BMI ≥ 25 kg/m2. The primary outcome was the infant body fat percentage (DXA scans) at 2 wk of age. Secondary outcomes included maternal metabolic markers during pregnancy, infant anthropometry at 2 wk and 3 mo of age, and metabolic markers at 3 mo. RESULTS: A total of 129 mothers were randomized, and 98 infants had a DXA scan at 2 wk. PRIMARY OUTCOME: Imputed and nonimputed analyses showed no effects of FO supplementation on infant body fat percentage at age 2 wk. SECONDARY OUTCOMES: There were no treatment effects on infant outcomes at 2 wk, but FO infants had a higher BMI z-score (P = 0.025) and ponderal index (P = 0.017) at age 3 mo. FO supplementation lowered maternal triglycerides by 17% at 30 wk of pregnancy (P = 0.0002) and infant triglycerides by 21% at 3 mo of age (P = 0.016) but did not affect maternal or infant insulin resistance. The rate of emergency cesarean section was lower with FO supplementation [aRR = 0.38 (95%CI 0.16, 0.90); P = 0.027]. CONCLUSIONS: FO supplementation of mothers with overweight or obesity during pregnancy did not impact infant body composition. There is a need to follow up the offspring to determine whether the observed metabolic effects persist. CLINICAL TRIAL REGISTRY NUMBER: This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12617001078347p). In addition, the Universal Trial Number, WHO, was obtained (U1111-1199-5860).


Assuntos
Óleos de Peixe , Sobrepeso , Feminino , Lactente , Gravidez , Humanos , Cesárea , Suplementos Nutricionais , Austrália , Obesidade/terapia , Composição Corporal , Lactação , Método Duplo-Cego , Triglicerídeos/farmacologia
12.
Eur J Appl Physiol ; 123(2): 249-260, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36449098

RESUMO

PURPOSE: Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity. METHODS: Skeletal muscle biopsies were obtained from middle-aged males (n = 24, 49.4 ± 3.2 years) who underwent sequential 14-day interventions of unilateral leg immobilisation, ambulatory recovery, and resistance training. We quantified vastus lateralis gene and protein expression of key proteins involved in mitochondrial biogenesis, fusion, fission, and turnover in at baseline and following each intervention. RESULTS: PGC1α mRNA decreased 40% following the immobilisation period, and was accompanied by a 56% reduction in MTFP1 mRNA, a factor involved in mitochondrial fission. Subtle mRNA decreases were also observed in TFAM (17%), DRP1 (15%), with contrasting increases in BNIP3L and PRKN following immobilisation. These changes in gene expression were not accompanied by changes in respective protein expression. Instead, we observed subtle decreases in NRF1 and MFN1 protein expression. Ambulatory recovery restored mRNA and protein expression to pre-intervention levels of all altered components, except for BNIP3L. Resistance training restored BNIP3L mRNA to pre-intervention levels, and further increased mRNA expression of OPA-1, MFN2, MTFP1, and PINK1 past baseline levels. CONCLUSION: In healthy middle-aged males, 2 weeks of immobilisation did not induce dramatic differences in markers of mitochondria fission and autophagy. Restoration of ambulatory physical activity following the immobilisation period restored altered gene expression patterns to pre-intervention levels, with little evidence of further adaptation to resistance exercise training.


Assuntos
Dinâmica Mitocondrial , Proteínas Mitocondriais , Masculino , Pessoa de Meia-Idade , Humanos , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Eur J Nutr ; 62(3): 1309-1322, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36539620

RESUMO

PURPOSE: B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS: Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS: Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION: Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.


Assuntos
Complexo Vitamínico B , Humanos , Idoso , Suplementos Nutricionais , Ácido Fólico , Vitamina B 12 , Minerais , Homocisteína
14.
J Physiol ; 600(16): 3749-3774, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35837833

RESUMO

We investigated whether digoxin lowered muscle Na+ ,K+ -ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak-workrate , 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ and 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , 90% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ to fatigue) trials using a double-blind, crossover, randomised, counter-balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ , fatigue, 3 h after exercise). In DIG, in resting muscle, [3 H]-ouabain binding site content (OB-Fab ) was unchanged; however, bound-digoxin removal with Digibind revealed total ouabain binding (OB+Fab ) increased (8.2%, P = 0.047), indicating 7.6% NKA-digoxin occupancy. Quadriceps muscle strength declined in DIG (-4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+ ]a were unchanged, whilst [K+ ]v was lower (P = 0.042) and [K+ ]a-v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB-Fab was increased at 67% V O 2 peak ${\rm{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (per wet-weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+ ]a , [K+ ]v and [K+ ]a-v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+ ]a , [K+ ]v and [K+ ]a-v were unchanged; with exercise (main effects), plasma [K+ ]a , [K+ ]v , [K+ ]a-v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA-digoxin occupancy, with K+ disturbances and fatiguability unchanged. KEY POINTS: The Na+ ,K+ -ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+ ]), excitability and plasma [K+ ] and thereby also in modulating fatigue during intense contractions. NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3 H]-ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+ ] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.


Assuntos
Digoxina , Ouabaína , Adulto , Digoxina/metabolismo , Fadiga , Humanos , Músculo Esquelético/fisiologia , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Curr Dev Nutr ; 6(5): nzac082, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35669048

RESUMO

Background: Red meat is a nutrient-dense food and a dietary staple. A new generation of plant-based meat analogs (PBMAs) have been designed to mimic the experience of eating meat, but there is limited evidence about their digestive efficacy and nutritional quality. Objectives: We compared the postprandial digestive response of a single meal containing meat commercially raised in New Zealand, including lamb, on-farm pasture-raised beef (Pasture), or grain-finished beef (Grain) with a PBMA (Beyond Burger; Beyond Meat) sold through consumer retail. The primary outcome was the appearance of amino acids in plasma. Secondary outcomes included glucose and insulin, appetite assessment, and anthropometry. Methods: Thirty healthy men (20-34 y) participated in a double-blinded randomized crossover trial. Each consumed 1 of the 4 test meals on 4 occasions separated by a washout period of at least 1 wk, following an overnight fast. The meal was a burrito-style wrap containing meat or PBMAs, vegetables, salsa, and seasonings in a flour tortilla. The amount of Pasture, Grain, Lamb, or BB was 220 g raw (∼160 g cooked). Venous blood samples were collected over 4 h. Appetite and hunger status was scored with visual analog scales. Results: Pre-meal amino acid concentrations in plasma did not differ by group (P > 0.9), although several nonessential amino acids differed strongly according to participant BMI. Postprandial amino acids peaked at 2-3 h in all groups. The BB meal produced significantly lower plasma concentrations of total, essential, branched-chain, and non-proteogenic amino acids than the Lamb, Pasture, or Grain meals, based on AUC. There were no significant differences between meal groups in scores for hunger, fullness, or cravings. Conclusions: Red meat meals exhibited greater bioavailability of amino acids compared with the PBMA (BB). Pasture versus Grain origins of the beef had little influence on participants' responses. This trial was registered at ClinicalTrials.gov as NCT04545398.

17.
Eur J Clin Nutr ; 76(10): 1415-1422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35459911

RESUMO

BACKGROUND/OBJECTIVES: Self-reported digestive intolerance to dairy foods is common. As dairy can be an important source of dietary protein, this study aimed to identify whether milk protein digestion is compromised in individuals with digestive intolerance. SUBJECTS/METHODS: Adult women (n = 40) were enroled in this double-blinded, randomised cross-over trial, with digestive symptoms characterised using a lactose challenge and self-reported digestive symptom questionnaire. Participants were classified as either lactose intolerant (LI, n = 10), non-lactose dairy intolerant (NLDI, n = 20) or dairy tolerant (DT, n = 10). In a randomised sequence, participants consumed three different kinds of milk (750 ml); conventional milk (CON), a2 Milk™ (A2M), and lactose-free conventional milk (LF-CON). Circulatory plasma amino acid (AA) concentrations were measured at baseline and every 30 min until 3 h post-ingestion. RESULTS: In all participants across all milk types, plasma AA concentrations (AUC0-180) increased after milk ingestion with no significant differences in responses observed between milk types or participants (P > 0.05), with the exception of the suppressed lysine response in the DT group following A2M ingestion, relative to the other two groups and milk types (P < 0.05). CONCLUSION: Milk protein digestion, as determined by circulatory AAs, is largely unaffected by dairy- and lactose- intolerances.


Assuntos
Aminoácidos , Intolerância à Lactose , Adulto , Aminoácidos/análise , Animais , Proteínas Alimentares/análise , Feminino , Humanos , Lisina/análise , Leite/química
18.
J Clin Endocrinol Metab ; 107(6): e2464-e2473, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35150259

RESUMO

CONTEXT: The kynurenine pathway generates metabolites integral to energy metabolism, neurotransmission, and immune function. Circulating kynurenine metabolites positively correlate with adiposity in children and adults, yet it is not known whether this relationship is present already at birth. OBJECTIVE: In this prospective longitudinal study, we investigate the relationship between cord blood kynurenine metabolites and measures of adiposity from birth to 4.5 years. METHODS: Liquid chromatography-tandem mass spectrometry was used to quantify cord blood kynurenine metabolites in 812 neonates from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. Fat percentage was measured by air displacement plethysmography and abdominal adipose tissue compartment volumes; superficial (sSAT) and deep subcutaneous (dSAT) and internal adipose tissue were quantified by magnetic resonance imaging at early infancy in a smaller subset of neonates, and again at 4 to 4.5 years of age. RESULTS: Cord blood kynurenine metabolites appeared to be higher in female newborns, higher in Indian newborns compared with Chinese newborns, and higher in infants born by cesarean section compared with vaginal delivery. Kynurenine, xanthurenic acid, and quinolinic acid were positively associated with birthweight, but not with subsequent weight during infancy and childhood. Quinolinic acid was positively associated with sSAT at birth. Kynurenic acid and quinolinic acid were positively associated with fat percentage at 4 years. CONCLUSION: Several cord blood kynurenine metabolite concentrations were positively associated with birthweight, with higher kynurenic acid and quinolinic acid correlating to higher percentage body fat in childhood, suggesting these cord blood metabolites as biomarkers of early childhood adiposity.


Assuntos
Cinurenina , Obesidade Infantil , Adiposidade , Adulto , Peso ao Nascer , Cesárea , Criança , Pré-Escolar , Feminino , Sangue Fetal/metabolismo , Humanos , Lactente , Recém-Nascido , Ácido Cinurênico/metabolismo , Estudos Longitudinais , Obesidade Infantil/metabolismo , Gravidez , Estudos Prospectivos , Ácido Quinolínico/metabolismo
19.
Int J Obes (Lond) ; 46(6): 1128-1137, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173282

RESUMO

BACKGROUND: The tryptophan-kynurenine (KYN) pathway is linked to obesity-related systemic inflammation and metabolic health. The pathway generates multiple metabolites, with little available data on their relationships to early markers of increased metabolic disease risk in children. The aim of this study was to examine the association of multiple KYN pathway metabolites with metabolic risk markers in prepubertal Asian children. METHODS: Fasting plasma concentrations of KYN pathway metabolites were measured using liquid chromatography-tandem mass spectrometry in 8-year-old children (n = 552) from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) prospective mother-offspring cohort study. The child's weight and height were used to ascertain overweight and obesity using local body mass index (BMI)-for-age percentile charts. Body fat percentage was measured by quantitative magnetic resonance. Abdominal circumference, systolic and diastolic blood pressure, homeostatic model assessment for insulin resistance (HOMA-IR), triglyceride, and HDL-cholesterol were used for the calculation of Metabolic syndrome scores (MetS). Serum triglyceride, BMI, gamma-glutamyl transferase (GGT), and abdominal circumference were used in the calculation of the Fatty liver index (FLI). Associations were examined using multivariable regression analyses. RESULTS: In overweight or obese children (n = 93; 16.9% of the cohort), all KYN pathway metabolites were significantly increased, relative to normal weight children. KYN, kynurenic acid (KA), xanthurenic acid (XA), hydroxyanthranilic acid (HAA) and quinolinic acid (QA) all showed significant positive associations with body fat percentage (B(95% CI) = 0.32 (0.22,0.42) for QA), HOMA-IR (B(95% CI) = 0.25 (0.16,0.34) for QA), and systolic blood pressure (B(95% CI) = 0.14(0.06,0.22) for QA). All KYN metabolites except 3-hydroxykynurenine (HK) significantly correlated with MetS (B (95% CI) = 0.29 (0.21,0.37) for QA), and FLI (B (95% CI) = 0.30 (0.21,0.39) for QA). CONCLUSIONS: Higher plasma concentrations of KYN pathway metabolites are associated with obesity and with increased risk for metabolic syndrome and fatty liver in prepubertal Asian children.


Assuntos
Fígado Gorduroso , Síndrome Metabólica , Obesidade Infantil , Criança , Estudos de Coortes , Humanos , Cinurenina/metabolismo , Sobrepeso , Estudos Prospectivos , Ácido Quinolínico/metabolismo , Triglicerídeos
20.
Eur J Nutr ; 61(1): 169-182, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34240265

RESUMO

PURPOSE: Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. METHODS: 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. RESULTS: Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). CONCLUSION: Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention.


Assuntos
Carbono , Doenças Cardiovasculares , Idoso , Envelhecimento , Betaína , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Colina , Suplementos Nutricionais , Feminino , Homocisteína , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...