Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(39): 8874-8879, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37756497

RESUMO

This study reports the observation and characterization of two isomers of the acrolein dimer by using high-resolution rotational spectroscopy in pulsed jets. The first isomer is stabilized by two hydrogen bonds, adopting a planar configuration, and is energetically favored over the second isomer, which exhibits a dominant n → π* interaction in a nearly orthogonal arrangement. Surprisingly, the n → π* interaction was revealed to enable a concerted tunneling motion of two moieties along the carbonyl group. This motion leads to the inversion of transient chirality associated with the exchange of donor-acceptor roles, as revealed by the spectral feature of quadruplets. Inversion of transient chirality is a fundamental phenomenon in quantum mechanics and commonly observed for only inversional motions of protons. It is the first discovery, to the best of our knowledge, that such heavy moieties can also undergo chirality inversion.

2.
Phys Chem Chem Phys ; 25(8): 6491-6497, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36786009

RESUMO

When an aldehyde molecule interacts with a nitrogen atom inserted in an aromatic ring, they form a number of non-bonding topologies. We measured the rotational spectra of three different isomers of the thiazole-formaldehyde adduct. In all of them, formaldehyde interacts specifically with thiazole through an n → π* interaction (along the Bürgi-Dunitz trajectory) and a C-H⋯O (acting as a proton acceptor) weak hydrogen bond, or through C-H⋯N (acting as a proton donor) and C-H⋯O (acting as a proton acceptor) weak hydrogen bonds. The spectra of isotopic substituted species were also measured to draw the molecular structures. Two n → π* stabilized isomers show a vertical structure in which the two molecular planes are perpendicular to each other, and the hydrogen bonded isomers feature a co-planar architecture. The competition between these non-bonding interactions was unveiled from experiments and theoretical calculations.

3.
J Phys Chem Lett ; 13(42): 9934-9940, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36259781

RESUMO

Phenyl isocyanide has been chosen as a prototype to probe the π-π interaction modulated by the -NC group, which has a chameleonic nature with two main resonance forms showing a triple bond and being carbenoid. The rotational spectroscopic investigation complemented with theoretical analyses indicates that the phenyl isocyanide dimer has a scissor-like configuration controlled by dispersive forces along with the formation of π-π stacking. This is the first rotational spectroscopic evidence, to the best of our knowledge, that the mono-substitution by an -NC group on benzene can activate the meta position in forming noncovalent interactions. This work also provides experimental evidence on the importance of substituent effects in modulating π-π stacked structures, as well as practical proof of a biased interaction behavior of isocyanide-substituted aromatic molecules.

4.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745072

RESUMO

Large amplitude motions (LAMs) form a fundamental phenomenon that demands the development of specific theoretical and Hamiltonian models. In recent years, along with the strong progress in instrumental techniques on high-resolution microwave spectroscopy and computational capacity in quantum chemistry, studies on LAMs have become very diverse. Larger and more complex molecular systems have been taken under investigation, ranging from series of heteroaromatic molecules from five- and six-membered rings to polycyclic-aromatic-hydrocarbon derivatives. Such systems are ideally suited to create families of molecules in which the positions and the number of LAMs can be varied, while the heteroatoms often provide a sufficient dipole moment to the systems to warrant the observation of their rotational spectra. This review will summarize three types of LAMs: internal rotation, inversion tunneling, and ring puckering, which are frequently observed in aromatic five-membered rings such as furan, thiophene, pyrrole, thiazole, and oxazole derivatives, in aromatic six-membered rings such as benzene, pyridine, and pyrimidine derivatives, and larger combined rings such as naphthalene, indole, and indan derivatives. For each molecular class, we will present the representatives and summarize the recent insights on the molecular structure and internal dynamics and how they help to advance the field of quantum mechanics.


Assuntos
Micro-Ondas , Estrutura Molecular , Movimento (Física) , Análise Espectral
5.
Molecules ; 27(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566082

RESUMO

The rotational spectrum of phenyl acetate, CH3COOC6H5, is measured using a free jet absorption millimeter-wave spectrometer in the range from 60 to 78 GHz and two pulsed jet Fourier transform microwave spectrometers covering a total frequency range from 2 to 26.5 GHz. The features of two large amplitude motions, the methyl group internal rotation and the skeletal torsion of the CH3COO group with respect to the phenyl ring C6H5 (tilted at about 70°), characterize the spectrum. The vibrational ground state is split into four widely spaced sublevels, labeled as A0, E0, A1, and E1, each of them with its set of rotational transitions and with additional interstate transitions. A global fit of the line frequencies of the four sublevels leads to the determination of 51 spectroscopic parameters, including the ΔEA0/A1 and ΔEE0/E1 vibrational splittings of ~36.4 and ~33.5 GHz, respectively. The V3 barrier to methyl internal rotation (~136 cm-1) and the skeletal torsion B2 barrier to the orthogonality of the two planes (~68 cm-1) are deduced.

6.
J Phys Chem Lett ; 13(1): 149-155, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962816

RESUMO

C6H5(CH2)nOH-CO2 complexes have been investigated using rotational spectroscopy (n = 0-2) complemented by quantum chemical calculations (n = 0-4), which implies that the side alkyl chain length can determine the types of intermolecular interactions. Unlike the in-plane C···O tetrel bond in phenol-CO2, the π*CO2···πaromatic interaction has been shown to link CO2 to phenylmethanol and 2-phenylethanol, which is, to the best of our knowledge, the first time it has been demonstrated by rotational spectroscopy. Further elongations of the side alkyl chain gradually increase the energies of intramolecular hydrogen bonds in 3-phenylpropanol and 4-phenylbutanol so that CO2 cannot break it. CO2 will be pushed farther from the monomers and link with the -OH group through a dominating C···O tetrel bond. Our observations would allow, with the choice of the proper length of the side alkyl chain, new strategies for engineering C···πaromatic-centered noncovalent bonding schemes for the capture, utilization, and storage of CO2.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120086, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34161849

RESUMO

The pure rotational spectra of the 1:1 ethanol - 1,4-dioxane complex and its OD mono-deuterated species have been measured using pulsed-jet Fourier transform microwave spectroscopy. Conformational predictions for the plausible isomers of ethanol - 1,4-dioxane have been carried out considering the spatial orientation of gauche/trans ethanol with respect to the chair/boat and twisted conformations of 1,4-dioxane. Using Helium for the supersonic expansion, the microwave spectrum has been observed for the most stable structure. In the observed isomer, the two subunits are linked together by an OH⋯O hydrogen bond with gauche ethanol acting as proton donor to dioxane in the chair conformation. The non-covalent interactions have been characterized using different computational approaches. A small inverse Ubbelohde effect was observed after H â†’ D isotopic substitution in the OH⋯O hydrogen bond.


Assuntos
Dioxanos , Etanol , Modelos Moleculares , Conformação Molecular
8.
J Phys Chem Lett ; 12(21): 5150-5155, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34032447

RESUMO

A dominating F···π*aromatic interaction is found to govern the benzaldehyde···tetrafluoromethane complex, as revealed by this rotational spectroscopic investigation. Secondary F···π*-C=O- and C σ*CF4···πaromatic interactions also contribute to the stability of the observed isomer. Narrow splittings have been observed in the rotational spectrum originating from a 3-fold internal rotation of CF4 above the aromatic moiety, and a corresponding V3 barrier was determined to be 1.572(14) kJ mol-1. This is the first rotational spectroscopic evidence in the literature implying that the aromatic π* antibonding orbital can be activated not only by electron-withdrawing substituents but also by complexation partners containing atoms with high electronegativity, like CF4. The results emphasize the partner molecules' role to modulate the π electron structure and show a change in the orbital character (π or π*) when participating in the formation of noncovalent interactions.

9.
J Phys Chem Lett ; 12(16): 3907-3913, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33861087

RESUMO

Besides its typical halogen donor behavior (exhibiting a Cl σ-hole) in forming Cl···B halogen bonds (B is an electron-rich region), CF3Cl reveals a new interaction site in its complex with CO2 when explored by rotational spectroscopy. Experimental evidence and theoretical analyses point out irrefutably that CF3Cl prefers to link to CO2 through its Cl "equatorial belt" consisting of the lone pairs of the Cl atom, resulting in a C···Cl tetrel bond. In addition, a secondary plausible C···O tetrel bond and a F···O halogen bond might contribute to the relative orientation of the moieties forming the complex. The effects of the Cl "equatorial belt" present in perhalogenated molecules, such as CF3Cl, have been hitherto overlooked in describing the origin of noncovalent interactions. That left a significant void that the present study tries to fill by outlining its importance.

10.
Phys Chem Chem Phys ; 23(12): 7295-7301, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876089

RESUMO

The ability and preference of 3-oxetanone to form hydrogen or tetrel bonds have been investigated in its complexes with water and formaldehyde by using Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Different types of interactions and internal dynamics have been observed in the targeted complexes. With water, the ether oxygen of 3-oxetanone is the favoured interaction site forming a classical O-HO hydrogen bond. Quite differently, the carbonyl group of 3-oxetanone plays the dual role as a tetrel donor and a proton acceptor in the 3-oxetanone-formaldehyde complex, featuring the CO tetrel bond and C-HO weak hydrogen bond interactions. Splittings originated from the internal rotation of formaldehyde around its C2 axis were also observed. The V2 barrier was estimated to be 375(10) cm-1 based on Meyer's one-dimensional flexible model. The changes in geometries and electronic densities upon complexation would shed light on the impact of archetype solvent and organic substrate molecules on the reactivity of 3-oxetanone.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119621, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743306

RESUMO

The rotational spectra of the parent and eight isotopologues of the 1:1 complex formic acid - tert-butyl alcohol (FA-TBA) have been measured by pulsed jet Fourier transform microwave spectroscopy. The spectra have been observed in the supersonic expansion of a mixture of FA and TBA in Helium, differently with respect to the mixtures of FA with primary and secondary alcohols, which undergo the esterification reaction upon supersonic expansion. In the complex, the two subunits are linked to each other by two different O-H···O hydrogen bonds (HB) in which FA and TBA are alternate their roles of bond acceptor and donor. Upon H â†’ D substitution of the corresponding O-H···O HB, a small Ubbelohde effect is observed.

12.
J Phys Chem Lett ; 12(5): 1367-1373, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33507084

RESUMO

We used jet-cooled broadband rotational spectroscopy to explore the balance between π-stacking and hydrogen-bonding interactions in the self-aggregation of thiophenol. Two different isomers were detected for the thiophenol dimer, revealing dispersion-controlled π-stacked structures anchored by a long S-H···S sulfur hydrogen bond. The weak intermolecular forces allow for noticeable internal dynamics in the dimers, as tunneling splittings are observed for the global minimum. The large-amplitude motion is ascribed to a concerted inversion motion between the two rings, exchanging the roles of the proton donor and acceptor in the thiol groups. The determined torsional barrier of B2 = 250.3 cm-1 is consistent with theoretical predictions (290-502 cm-1) and the monomer barrier of 277.1(3) cm-1. For the thiophenol trimer, a symmetric top structure was assigned in the spectrum. The results highlight the relevance of substituent effects to modulate π-stacking geometries and the role of the sulfur-centered hydrogen bonds.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119320, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360563

RESUMO

Non-covalent interactions determine the three-dimensional structure and activity of biological molecules. In this work, the pyrrole-pyridine complex considered as a model of the NH⋯N hydrogen-bonded Watson-Crick base pairs has been generated in a supersonic expansion and characterized by chirped pulse Fourier transform microwave spectroscopy. The analysis of the unconventional spectral pattern of the 1:1 pyrrole-pyridine adduct and its 13C and 15N isotopologues reveal a non-planar complex, with a bent NH⋯N hydrogen bond and large amplitude motion of the pyrrole subunit. The bent structure is likely to arise from the stablishment of the secondary CH⋯N interaction between pyridine and pyrrole moieties.

14.
J Phys Chem A ; 123(39): 8435-8440, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31487179

RESUMO

The rotational spectrum of benzyl mercaptan (parent and four isotopologues) has been assigned in a supersonic jet expansion using chirped-pulse Fourier transform microwave spectroscopy. The spectrum is characterized by torsional tunneling doublings, strongly perturbed by Coriolis interactions. The experimental rotational constants reveal that the sulfur atom is located above the ring plane in a gauche conformation. The torsion dihedral θ0 = φ (SCα-C1C2) is approximately 74°, according to a flexible molecular model calculation reproducing the energy separation (ΔE01 ∼ 2180.4 MHz) between the first two torsional substates. The global minimum configuration is 4-fold degenerate, corresponding to potential minima with θ0 ≈ ±74° and ±(180-74)°. The four equivalent minima are separated by potential barriers at θ = ±90°, 0°, or 180°. The tunneling splittings are caused by the potential barrier at θ = ± 90°, while the barriers at torsions of 0° or 180° are too large to generate detectable splittings. The tunnelling barrier has been determined as 248 cm-1, similar to the value obtained with high-level MP2 ab initio calculations (259 cm-1), but smaller than in benzyl alcohol (280 cm-1).

15.
Phys Chem Chem Phys ; 21(28): 15656-15661, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31271180

RESUMO

The rotational spectrum of the 2,2,4,4-tetrafluoro-1,3-dithietanewater complex has been investigated by high resolution rotational spectroscopy. Experimental evidence and quantum theoretical analyses revealed that the two moieties are linked together through a dominant SO chalcogen bond. Two secondary FO interactions contribute to the stability of the complex. The rotational transitions of four isotopologues are split into two component lines due to the internal rotation of the water moiety around its C2 axis. In the HDO isotopologue, a small µc dipole moment component is generated which inverts upon internal rotation of water, allowing the experimental determination of the tunneling splitting (21.46(5) GHz). Such splitting can be reproduced with a one-dimensional flexible model when the barrier to internal rotation of water is 87.4(2) cm-1.

16.
Chemistry ; 25(49): 11402-11411, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31002406

RESUMO

In the last decade, experiment and theory have expanded our vision of non-covalent interactions (NCIs), shifting the focus from the conventional hydrogen bond to new bridging interactions involving a variety of weak donor/acceptor partners. Whereas most experimental data originate from condensed phases, the introduction of broadband (chirped-pulse) microwave fast-passage techniques has revolutionized the field of rotational spectroscopy, offering unexplored avenues for high-resolution studies in the gas phase. We present an outlook of hot topics for rotational investigations on isolated intermolecular clusters generated in supersonic jet expansions. Rotational spectra offer very detailed structural data, easily discriminating the isomeric or isotopic composition and effectively cancelling any solvent, crystal, or matrix bias. The direct comparison with quantum mechanical predictions provides insight into the origin of the inter- and intramolecular interactions with much greater precision than any other spectroscopic technique, simultaneously serving as test-bed for fine-tuning of theoretical methods. We present recent examples of rotational investigations around three topics: oligomer formation, chiral recognition, and identification of halogen, chalcogen, pnicogen, or tetrel bonds. The selected examples illustrate the benefits of rotational spectroscopy for the structural and energetic assessment of inter-/intramolecular interactions, which may help to move from fundamental research to applications in supramolecular chemistry and crystal engineering.

17.
J Phys Chem A ; 123(9): 1785-1789, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730139

RESUMO

The rotational spectrum of the 1:1 complex formic acid-isopropylformate (FA-IPF) has been first observed when trying to assign the pulsed jet Fourier transform microwave (FTMW) spectrum of the adduct formic acid-2-propanol, by expanding a binary mixture of HCOOH and 2-propanol in He. The strong FTMW spectrum of isopropylformate, formed by the esterification reaction, was observed instead. However, when HCOOH was in excess in the binary mixture, it was possible to observe and assign the rotational spectrum of FA-IPF. Later on a much intense spectrum of FA-IPF was obtained, when combining FA with IPF. Finally, the spectra of five isotopologues of the most stable isomer of formic acid-isopropylformate have been observed by means of rotational spectroscopy in supersonic expansion. Some of them, HCOOH-(CH3)2CHOOCD and HCOOH-(CH3)2CDOOCH have been synthesized in the MW cavity by using DCOOH or (CH3)2CDOH as precursors in the esterification process. In the observed isomer of the complex, the two subunits are linked to each other by a standard O-H···O and a weak C-H···O hydrogen bond. The dissociation energy has been estimated to be 34.1 kJ·mol-1.

18.
Phys Chem Chem Phys ; 21(7): 3695-3700, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652707

RESUMO

We report the rotational spectra of three isotopologues of the dimer of chlorofluoromethane, namely CH235ClF-CH235ClF, CH235ClF-CH237ClF and CH237ClF-CH235ClF. The assigned (most stable) conformer is chiral (C1 symmetry) and displays a network of two C-HCl-C and one C-HF-C weak hydrogen bonds, combined with a ClF halogen bond. The hyperfine structures due to the quadrupolar effects of the two non-equivalent 35Cl (or 37Cl) atoms have been fully resolved, leading to an accurate determination of two sets of diagonal and of some mixed quadrupole coupling constants. Information on the rs positions of the two Cl atoms and on the structural parameters of the hydrogen bonds has been obtained. The dissociation energy of the complex has been estimated as 5.9 kJ mol-1.

19.
Phys Chem Chem Phys ; 21(7): 3545-3549, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30168540

RESUMO

We assigned the rotational spectra of the parent and the OD isotopologues of the intermolecular complex pyridine-tert-butyl alcohol. The rotational and 14N quadrupole coupling constants are in agreement with a σ-type shape and a Cs symmetry of the complex. The two subunits are held together by a "classical" O-HN intermolecular hydrogen bond. Structural features of these hydrogen bonds are given and compared to those of similar molecular adducts. The ON distance decreases by 4 mÅ upon deuteration of the hydroxyl group, denoting a marked reverse Ubbelohde effect of the O-HN hydrogen bond.

20.
Phys Chem Chem Phys ; 21(7): 3676-3682, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30451262

RESUMO

Two conformers of cyclohexanol and the cyclohexanol-water adduct have been characterized in a jet expansion using rotational spectroscopy. In the gas phase, cyclohexanol adopts an equatorial position for the hydroxyl group, with the two conformers differing in the orientation of the hydroxylic hydrogen, either gauche or trans with respect to the aliphatic hydrogen at C(1). Axial cyclohexanol was not detected in the jet. The transitions of the gauche conformer are split into two component lines due to the tunneling effect of the O-H internal rotation, which connects two equivalent gauche minima. The tunneling splitting in the vibrational ground state has been determined to be ΔE0+0- = 52(2) GHz. From this splitting, the inversion barriers connecting the two equivalent gauche conformers have been determined using a flexible model to be B2 = 377 cm-1. A single isomer is detected for the cyclohexanol-water dimer, in which the water molecule acts as a proton donor to the equatorial gauche ring. The presence of torsional tunneling in the adduct suggests a concerted large-amplitude-motion in which the internal rotation in the ring is accompanied by a torsion of the water molecule, to produce an equivalent enantiomer. The torsional tunneling in the adduct is reduced to ΔE0+0- = 32.7(4) GHz and the potential barrier in the complex increases to B2 = 494 cm-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...