Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(25): 7203-7210, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182980

RESUMO

We report on a fully bidirectional 680 km fiber link connecting two cities for which the equipment, the setup, and the characterization are managed for the first time by an industrial consortium. The link uses an active telecommunication fiber network with parallel data traffic and is equipped with three repeater laser stations and four remote double bidirectional erbium-doped fiber amplifiers. We report a short-term stability at 1 s integration time of 5.4×10-16 in 0.5 Hz bandwidth and a long-term stability of 1.7×10-20 at 65,000 s of integration time. The accuracy of the frequency transfer is evaluated as 3×10-20. No shift is observed within the statistical uncertainty. We show a continuous operation over five days with an uptime of 99.93%. This performance is comparable with the state-of-the-art coherent links established by National Metrology Institutes in Europe. It is a first step in the construction of an optical fiber network for metrology in France, which will give access to an ultrahigh performance frequency standard to a wide community of scientific users.

2.
Nat Commun ; 7: 12443, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503795

RESUMO

Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...