Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(30): 43037-43048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888827

RESUMO

Honeybees are insects very sensitive to environmental pollution and at the same time very good indicators of the pollution levels for certain types of pollutants. The morphology and ethology of these insects make them perfect vectors for dust and substances, including heavy metals produced by anthropic activities or naturally generated and deposited on foraged flora. When bees are raised to produce foods such as honey and pollen, they can easily transfer pollutants collected from contaminated flower affecting the quality of these products. However, depending on geographical location of the apiaries and their distance from pollution sources, the risk to contaminate bee products can be higher or lower requiring deep investigations. In this study, two apiaries were built near ground transport infrastructures and used as monitoring stations for investigating heavy metal presence in beehive products such as bee wax, pollen, and honey. Another apiary was placed between these two locations at a distance of 500 m from each one and used as central node to asses possible diffusion trends. Parallel, air quality was monitored in the proximity of each apiary to verify the air pollution of the environments close to these sites. The results of the study suggest that the presence of the highway and the train station affected the levels of heavy metal presence in the apiary products. Air quality near apiaries was also negatively affected by ground transport, especially in proximity of the highway. Wax resulted significantly more polluted in the apiary close to train station with elements such as Al, Zn, and Ni, while honey and pollen were significantly more polluted in the proximity of the highway with elements such as Al, Fe, Cu, and Zn. Honey was the product suffering less the contamination by heavy metals while pollen was the worse. In conclusion, the presence of transportation nodes determined a higher accumulation of heavy metals in beehive products respect the apiary placed in between, suggesting to pay particular attention in the site selection for the placement of apiaries to protect both bees and human health.


Assuntos
Monitoramento Ambiental , Mel , Metais Pesados , Abelhas , Metais Pesados/análise , Animais , Mel/análise , Pólen/química
3.
Front Plant Sci ; 14: 1269212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126019

RESUMO

Introduction: Wheat is a staple food, with the two most common species being Triticum aestivum and Triticum turgidum ssp. durum. Moreover, the latter, T. turgidum, includes other tetraploid subspecies, among which the sspp. turanicum (Khorasan wheat) and polonicum (Polish wheat), whose importance has increased in the last decades, representing alternative crops for marginal areas, in addition to being a source of genetic diversity. Methods: In this work, different accessions of these three subspecies of T. turgidum have been grown in 2 years in the same environment and have been characterized for technological properties and factors affecting nutritional quality, such as fiber amount and the content of micro- and macro-nutrients in grains, and for root morphological traits. Results: These analyses allowed the identification, in particular, of a Polish wheat accession showing better technological performances, a higher amount of positive micro- and macro-elements, and a lower amount of toxic cadmium. The modern variety Svevo and the Polish Pol2 showed the lowest and the highest shoot:root ratio, respectively. The high shoot:root ratio in Pol2 was mainly attributable to the decrease in root growth. Although Pol2 had a lower root biomass, its particular root morphology made it more efficient for nutrient uptake, as evident from the greater accumulation of micro- and macro-nutrients. Discussion: These results underline that it is not possible to draw general conclusions about the difference between primitive and modern wheats, but rather a case-by-case approach should be chosen.

4.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159456

RESUMO

Mycotoxins are the most common natural contaminants and include different types of organic compounds, such as deoxynivalenol (DON) and T-2 and HT-2 toxins. The major toxic inorganic elements include those commonly known as heavy metals, such as cadmium, nickel, and lead, and other minerals such as arsenic. In this study, micronisation and air classification technologies were applied to durum wheat (Triticum turgidum ssp. durum L.) samples to mitigate inorganic (arsenic) and organic contaminants in unrefined milling fractions and final products (pasta). The results showed the suitability of milling plants, providing less refined milling products for lowering amounts of mycotoxins (DON and the sum of T-2 and HT-2 toxins) and toxic inorganic elements (As, Cd, Ni, and Pb). The results showed an As content (in end products) similar to that obtained using semolina as raw material. In samples showing high organic contamination, the contamination rate detected in the more bran-enriched fractions ranged from 74% to 150% (DON) and from 119% to 151% (sum of T2 and HT-2 toxins) as compared to the micronised samples. Therefore, this technology may be useful for manufacturing unrefined products with reduced levels of organic and inorganic contaminants, minimising the health risk to consumers.

5.
Foods ; 10(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829105

RESUMO

Durum wheat milling is a key process step to improve the quality and safety of final products. The aim of this study was to characterize three bran-enriched milling fractions (i.e., F250, G230 and G250), obtained from three durum wheat grain samples, by using an innovative micronization and air-classification technology. Milling fractions were characterized for main standard quality parameters and for alveographic properties, starch composition and content, phenolic acids, antioxidant activity and ATIs. Results showed that yield recovery, ash content and particle size distributions were influenced either by the operating conditions (230 or 250) or by the grain samples. While total starch content was lower in the micronized sample and air-classified fractions, the P/L ratio increased in air-classified fractions as compared to semolina. Six main individual phenolic acids were identified through HPLC-DAD analysis (i.e., ferulic acid, vanillic acid, p-coumaric acid, sinapic acid, syringic and p-hydroxybenzoic acids). Compared to semolina, higher contents of all individual phenolic components were found in all bran-enriched fractions. The highest rise of TPAs occurred in the F250 fraction, which was maintained in the derived pasta. Moreover, bran-enriched fractions showed significant reductions of ATIs content versus semolina. Overall, our data suggest the potential health benefits of F250, G230 and G250 and support their use to make durum-based foods.

6.
Foods ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34441573

RESUMO

Dietary guidelines recommend the consumption of unprocessed, or minimally processed, wheat foods because they are richer in health-promoting components (i.e., minerals, vitamins, lignans, phytoestrogens, and phenolic compounds) compared to traditionally refined products. The design and implementation of technological solutions applied to the milling process are becoming a key requirement to obtain less refined mill products characterized by healthier nutritional profiles. This study presents the development of an upgraded micronization plant and of a modified air-classification plant to produce several novel types of durum wheat milling fractions, each enriched in bran particles of different sizes (from 425 µm > Ø to Ø < 180 µm) and percentage ratios. A preliminary quality assessment of the milling fractions was carried out by measuring yield percentages and ash content, the latter being related to detect the presence of bran particles. A wide array of milling fractions with different original particle size compositions was provided through the study of the process. Results indicate the ability of the novel pilot plants to produce several types of less refined milling fractions of potential interest for manufacturing durum wheat end-products beneficial for human health.

7.
Food Sci Technol Int ; 24(3): 242-250, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29186998

RESUMO

This work describes a process for producing durum wheat flour fractions with high potential nutritional value using grain pre-milling hydrothermal treatment and ultra-fine grinding (micronization), coupled with air classification. The difference of bioactive value of the flour fractions in relation to dietary fibre and phenolic compounds was monitored on four durum wheat cultivars by analysing total arabinoxylans, water extractable arabinoxylans and 5- n-alkylresorcinols. The extractability of the analysed compounds was most significantly affected by hydrothermal treatment. On average, the hydrothermally treated kernels compared with the untreated ones presented a marked increase of water extractable arabinoxylans and alkylresorcinols (about 25 and 48%, respectively), whereas slightly lower total arabinoxylans content (about 9%) was detected. The air classification applied on micronized kernels produced two flour fractions, coarse and fine, with the last showing, irrespective of the hydrothermal treatment, an increment of alkylresorcinols (24 and 22% in untreated and treated samples) and of total arabinoxylans (13 and 20% in untreated and treated samples) in comparison with the coarse one. The fine fraction (particles ≤ 120 µm), resulting richer in bioactive compounds, provides an interesting raw material to enrich traditional semolina in which, due to the removal of the external layers, the losses of total arabinoxylans and of alkylresorcinols were more than 60 and 90% alkylresorcinols, respectively, if compared with whole wheat grain.


Assuntos
Antioxidantes/análise , Fibras na Dieta/análise , Farinha/análise , Manipulação de Alimentos/métodos , Fenóis/análise , Sementes/química , Triticum/química , Alquilação , Antioxidantes/química , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Inspeção de Alimentos/métodos , Temperatura Alta , Humanos , Itália , Valor Nutritivo , Tamanho da Partícula , Fenóis/química , Resorcinóis/análise , Resorcinóis/química , Sementes/crescimento & desenvolvimento , Solubilidade , Especificidade da Espécie , Triticum/crescimento & desenvolvimento , Grãos Integrais/química , Xilanos/análise , Xilanos/química
8.
Breed Sci ; 66(4): 572-579, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795682

RESUMO

Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and ß-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, ß-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and ß-glucans biosynthesis.

9.
Anal Bioanal Chem ; 406(19): 4765-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24842402

RESUMO

During wheat digestion, gluten-derived proteolytic resistant peptides are generated, some of them involved in celiac disease. In vitro digestion models able to mimic the peptides generated in the human gastrointestinal tract are extremely useful to assess the pathogenicity of wheat-derived products. In this paper, samples belonging to three different durum wheat varieties were taken at six different steps of the pasta production chain and two different digestion models present in the literature were assessed on the different samples: a more complex one using artificial fluids simulating the exact composition of digestive juices, and a simplified method based on a peptic-tryptic/chymotryptic treatment of wheat ethanolic extract. An extensive characterization of the peptides generated using two in vitro digestion models was performed through LC-MS/MS techniques and the two methods were compared in order to evaluate qualitative and quantitative differences and their possible implications for varietal screening. Strong differences in the type of peptides produced with the two methods were detected, indicating that the simplified method can still be used for a varietal screening but is not representative of the peptides really generated after physiological human digestion. Results indicate a clear necessity of physiologically accurate models for simulating human gastrointestinal digestion of wheat products.


Assuntos
Doença Celíaca/imunologia , Cromatografia Líquida de Alta Pressão/métodos , Glutens/imunologia , Peptídeos/imunologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Triticum/imunologia , Digestão/imunologia , Humanos , Peptídeos/análise
10.
Int J Mol Sci ; 12(7): 4536-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845095

RESUMO

Arabinoxylans (AX) represent the most abundant components of non-starch polysaccharides in wheat, constituting about 70% of cell wall polysaccharides. An important property of AX is their ability to form highly viscous water solutions; this peculiarity has a significant impact on the technological characteristics of wheat and determines the physiologically positive influence in consumption. Durum wheat (Triticum turgidum L. var durum), the raw material for pasta production, is one of the most important crops in Italy. As part of a large project aimed at improving durum wheat quality, the characterization of the nutritional and technological aspects of whole grains was considered. Particular attention was addressed to identify the best suited genotypes for the production of innovative types of pasta with enhanced functional and organoleptic properties. The objective of the present study was to investigate the genetic variability of AX by examining a group of durum wheat genotypes collected at two localities in Italy for two consecutive years. The environmental influence on AX content and extractability was also evaluated. Variability in the AX fraction contents was observed; the results indicated that AX fractions of durum wheat grain can be affected by the genotype and environment characteristics and the different contribution of genotype and environment to total variation was evidenced. The genotype × environment (G × E) interaction was significant for all examined traits, the variations due to G × E being lower than that of genotype or environment. The data and the statistical analysis allowed identification of the Italian durum wheat varieties that were consistently higher in total arabinoxilans; in addition, principal component analysis biplots illustrated that for arabinoxylan fractions some varieties responded differently in various environment climatic conditions.


Assuntos
Triticum/química , Xilanos/química , Análise de Variância , Genótipo , Monossacarídeos/química , Monossacarídeos/metabolismo , Extratos Vegetais/química , Análise de Componente Principal , Chuva , Temperatura , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...