Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(8): 1880-1890, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37494676

RESUMO

Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.


Assuntos
Grelina , Via Secretória , Animais , Masculino , Aciltransferases/metabolismo , Corantes , Grelina/metabolismo , Ligantes
2.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234806

RESUMO

The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with one another by binding to growth factors at the plasma membrane and activating intracellular signaling pathways to elicit responses such as migration, proliferation, survival and differentiation. The PDGFR family consists of two receptors, PDGFRα and PDGFRß, that dimerize to form PDGFRα homodimers, PDGFRα/ß heterodimers and PDGFRß homodimers. Here, we overcame prior technical limitations in visualizing and purifying PDGFRα/ß heterodimers by generating a cell line stably expressing C-terminal fusions of PDGFRα and PDGFRß with bimolecular fluorescence complementation fragments corresponding to the N-terminal and C-terminal regions of the Venus fluorescent protein, respectively. We found that these receptors heterodimerize relatively quickly in response to PDGF-BB ligand treatment, with a peak of receptor autophosphorylation following 5 minutes of ligand stimulation. Moreover, we demonstrated that PDGFRα/ß heterodimers are rapidly internalized into early endosomes, particularly signaling endosomes, where they dwell for extended lengths of time. We showed that PDGFRα/ß heterodimer activation does not induce downstream phosphorylation of ERK1/2 and significantly inhibits cell proliferation. Further, we characterized the PDGFR dimer-specific interactome and identified MYO1D as a novel protein that preferentially binds PDGFRα/ß heterodimers. We demonstrated that knockdown of MYO1D leads to retention of PDGFRα/ß heterodimers at the plasma membrane, resulting in increased phosphorylation of ERK1/2 and increased cell proliferation. Collectively, our findings impart valuable insight into the molecular mechanisms by which specificity is introduced downstream of PDGFR activation to differentially propagate signaling and generate distinct cellular responses.

3.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946433

RESUMO

Signaling through the platelet-derived growth factor receptors (PDGFRs) plays a critical role in multiple cellular processes during development. The two PDGFRs, PDGFRα and PDGFRß, dimerize to form homodimers and/or heterodimers. Here, we overcome previous limitations in studying PDGFR dimer-specific dynamics by generating cell lines stably expressing C-terminal fusions of each PDGFR with bimolecular fluorescence complementation (BiFC) fragments corresponding to the N-terminal or C-terminal regions of the Venus fluorescent protein. We find that PDGFRß receptors homodimerize more quickly than PDGFRα receptors in response to PDGF ligand, with increased levels of autophosphorylation. Furthermore, we demonstrate that PDGFRα homodimers are trafficked and degraded more quickly, whereas PDGFRß homodimers are more likely to be recycled back to the cell membrane. We show that PDGFRß homodimer activation results in a greater amplitude of phospho-ERK1/2 and phospho-AKT signaling, as well as increased proliferation and migration. Finally, we demonstrate that inhibition of clathrin-mediated endocytosis leads to changes in cellular trafficking and downstream signaling, particularly for PDGFRα homodimers. Collectively, our findings provide significant insight into how biological specificity is introduced to generate unique responses downstream of PDGFR engagement. This article has an associated First Person interview with the first author of the paper.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Humanos , Fosforilação , Multimerização Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
J Biol Chem ; 294(39): 14166-14174, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413115

RESUMO

Integral membrane proteins represent a large and diverse portion of the proteome and are often recalcitrant to purification, impeding studies essential for understanding protein structure and function. By combining co-evolutionary constraints and computational modeling with biochemical validation through site-directed mutagenesis and enzyme activity assays, we demonstrate here a synergistic approach to structurally model purification-resistant topologically complex integral membrane proteins. We report the first structural model of a eukaryotic membrane-bound O-acyltransferase (MBOAT), ghrelin O-acyltransferase (GOAT), which modifies the metabolism-regulating hormone ghrelin. Our structure, generated in the absence of any experimental structural data, revealed an unanticipated strategy for transmembrane protein acylation with catalysis occurring in an internal channel connecting the endoplasmic reticulum lumen and cytoplasm. This finding validated the power of our approach to generate predictive structural models for other experimentally challenging integral membrane proteins. Our results illuminate novel aspects of membrane protein function and represent key steps for advancing structure-guided inhibitor design to target therapeutically important but experimentally intractable membrane proteins.


Assuntos
Aciltransferases/química , Domínio Catalítico , Acetilação , Aciltransferases/metabolismo , Animais , Grelina/química , Grelina/metabolismo , Humanos , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...