Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961289

RESUMO

Mn5Si3nanowires are believed to be the building blocks of the newest trends of flexible and stretchable devices in nanoelectronics. In this context , growing Mn5Si3nanowires, as well as characterizing their electronic transport properties provide insight into their phenomenology. In this work, we report on the growth mechanism of Mn5Si3nanowires produced by the metallic flux nanonucleation method, as well as the resistivity measurements of these nanostructures. Our calculation allows us, by using the Washburn equation for pore infiltration, to give a guess on why we obtain Mn-rich nanowires. In addition, some morphological aspects of the diameter-modulated Mn5Si3nanowires were discussed based on the classical nucleation theory. From the resistivity measurements for the smallest diameter among the nanowires, we observed a significant reduction of around 37% of the phonons characteristic temperature by fitting the Bloch-Grünesein formula with other sources of scattering. Our results lead to a better understanding on the recent metallic flux nanonucleation growth method, as well as going a step further into the electronic transport properties of the Mn5Si3nanowires.

2.
Nanoscale Adv ; 3(11): 3251-3259, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133655

RESUMO

Recently, core-shell nanowires have been proposed as potential electrical connectors for nanoelectronics components. A promising candidate is Mn5Si3 nanowires encapsulated in an oxide shell, due to their low reactivity and large flexibility. In this work, we investigate the use of the one-step metallic flux nanonucleation method to easily grow manganese silicide single crystal oxide-protected nanowires by performing their structural and electrical characterization. We find that the fabrication method yields a room-temperature hexagonal crystalline structure with the c-axis along the nanowire. Moreover, the obtained nanowires are metallic at low temperature and low sensitive to a strong external magnetic field. Finally, we observe an unknown electron scattering mechanism for small diameters. In conclusion, the one-step metallic flux nanonucleation method yields intermetallic nanowires suitable for both integration in flexible nanoelectronics as well as low-dimensionality transport experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA