Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30328811

RESUMO

The standard reference Caenorhabditis elegans strain, N2, has evolved marked behavioral changes in social feeding behavior since its isolation from the wild. We show that the causal, laboratory-derived mutations in two genes, npr-1 and glb-5, confer large fitness advantages in standard laboratory conditions. Using environmental manipulations that suppress social/solitary behavior differences, we show the fitness advantages of the derived alleles remained unchanged, suggesting selection on these alleles acted through pleiotropic traits. Transcriptomics, developmental timing, and food consumption assays showed that N2 animals mature faster, produce more sperm, and consume more food than a strain containing ancestral alleles of these genes regardless of behavioral strategies. Our data suggest that the pleiotropic effects of glb-5 and npr-1 are a consequence of changes to O2 -sensing neurons that regulate both aerotaxis and energy homeostasis. Our results demonstrate how pleiotropy can lead to profound behavioral changes in a popular laboratory model.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Comportamento Alimentar , Aptidão Genética , Comportamento Social , Alelos , Animais , Comportamento Animal , Regulação da Expressão Gênica , Genes de Helmintos , Neurônios/fisiologia , Tamanho do Órgão , Oxigênio/metabolismo , Faringe/anatomia & histologia , Análise de Componente Principal , Reprodução , Espermatogênese
2.
Trends Genet ; 34(11): 883-898, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30166071

RESUMO

The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes. Findings from a number of species indicate that statistical epistasis is pervasive between natural genetic variants. However, the properties of experimental systems that enable analysis of epistasis also constrain extrapolation of these results back into natural populations.


Assuntos
Epistasia Genética/genética , Genética Populacional , Locos de Características Quantitativas/genética , Animais , Frequência do Gene/genética , Genótipo , Modelos Genéticos , Fenótipo
3.
PLoS Genet ; 13(5): e1006769, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28493873

RESUMO

Most biological traits and common diseases have a strong but complex genetic basis, controlled by large numbers of genetic variants with small contributions to a trait or disease risk. The effect-size of most genetic variants is not absolute and is instead dependent upon multiple factors such as the age and genetic background of an organism. In order to understand the mechanistic basis of these changes, we characterized heritable trait differences between two domesticated strains of C. elegans. We previously identified a major effect locus, caused in part by a mutation in a component of the NURF chromatin remodeling complex, that regulates reproductive output in an age-dependent manner. The effect-size of this locus changes from positive to negative over the course of an animal's reproductive lifespan. Here, we use a previously published macroscale model of the egg-laying rate in C. elegans to show that time-dependent effect-size is explained by an unequal use of sperm combined with negative feedback between sperm and ovulation rate. We validate key predictions of this model with controlled mating experiments and quantification of oogenesis and sperm use. Incorporation of this model into QTL mapping allows us to identify and partition new QTLs into specific aspects of the egg-laying process. Finally, we show how epistasis between two genetic variants is predicted by this modeling as a consequence of the unequal use of sperm. This work demonstrates how modeling of multicellular communication systems can improve our ability to predict and understand the role of genetic variation on a complex phenotype. Negative autoregulatory feedback loops, common in transcriptional regulation, could play an important role in modifying genetic architecture in other traits.


Assuntos
Caenorhabditis elegans/genética , Montagem e Desmontagem da Cromatina/genética , Pleiotropia Genética , Locos de Características Quantitativas/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Mapeamento Cromossômico , Epistasia Genética , Retroalimentação Fisiológica , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Mutação , Oócitos/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento
4.
Dev Biol ; 419(2): 250-261, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634571

RESUMO

Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Neurônios GABAérgicos/citologia , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/citologia , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Genes Reporter , Neurônios Motores/classificação , Neurogênese/genética , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/fisiologia , RNA Guia de Cinetoplastídeos/genética , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Superfície Celular/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA