Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 121: 111846, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579509

RESUMO

Animal-derived collagen may contain viruses, and its impurity can cause immunological reactions. Chitosan, always required a neutralization step in fabricating it into the biocompatible tissue engineering scaffolds. To avoid these risks and simplify the production process, a series of recombinant human collagen/carboxylated chitosan (RHC-CHI) based soft hydrogel scaffolds were prepared by crosslinking-induced gelation and then investigated their feasibilities for use as soft tissue engineering scaffolds. The gelation time was optimized by modulating the biopolymer concentration or reaction temperature. The hydrogel swelling, degradation rate, and mechanical properties were also investigated. The results showed that these parameters could be tuned by adjusting either the RHC-to-chitosan ratio or the total polymer concentration. The mechanical properties of the hydrogels were improved by adding chitosan, but excess chitosan reduced the hydrogel mechanical strength and accelerated the degradation speed. Cytotoxicity tests showed that all fabricated soft hydrogels were biocompatible and displayed no cytotoxicity. Cytocompatibility tests and qRT-PCR studies indicated that the hydrogel system promoted the adhesion and proliferation of NIH-3T3 cells, and cellular activities were directly up-regulated by RHC. Finally, our in vivo study proved these hydrogels were able to accelerate the cell infiltration and wound closure. These results show that the soft RHC-CHI hydrogels show promise in soft-tissue engineering.


Assuntos
Materiais Biocompatíveis , Quitosana , Animais , Materiais Biocompatíveis/farmacologia , Colágeno , Humanos , Hidrogéis , Camundongos , Engenharia Tecidual , Alicerces Teciduais
2.
J Cell Sci ; 132(4)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404829

RESUMO

Since the establishment of cell culture, common practice has been to grow adherent cells in 2D monolayers. Although cells behave completely differently when grown under these artificial conditions, the ease of 2D culturing has meant that this practice still prevails, and adopting conditions that more closely reflect the natural microenvironment has been met with substantial inertia. The alternative, animal models that mimic natural human physiology, are less accessible, strictly regulated and require licences and expensive facilities. Although transition from 2D to 3D cell culturing is gathering momentum, there is a clear need for alternative culturing methods that more closely resemble in vivo conditions. Here, we show that decellularised organs gleaned from discarded animal carcasses are ideal biomimetic scaffolds to support secondary tumour initiation in vitro Further, we describe how to decellularise tissue and perform basic histochemistry and immunofluorescence procedures for cell and matrix detection. Cancer cell behaviour on this matrix is followed by way of an example. Because integration into the traditional work flow is easy and inexpensive, we hope this article will encourage other researchers to adopt this approach.


Assuntos
Neoplasias/patologia , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Animais , Biomimética , Técnicas de Cultura de Células/métodos , Células Cultivadas , Ratos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...