Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 26628-26638, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236851

RESUMO

We demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2nd derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations. The thermal and wavelength stress tests ranged from 27°C to 36°C and 1309.90 nm to 1310.85 nm and revealed average eye diagrams Q-factor values of 5.8 and 5.9 respectively, validating the system robustness to unstable environments and fabrication variations.

2.
Opt Express ; 30(8): 13510-13521, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472961

RESUMO

We introduce a new design space for optimizing III-V devices monolithically grown on Silicon substrates by extending the concept of nano-ridge engineering from binary semiconductors such as GaAs, InAs and GaSb to the ternary alloy InGaAs. This allows controlling the fundamental lattice constant of the fully relaxed ternary nano-ridge which thereby serves as a tunable base for the integration of diverse device hetero-layers. To demonstrate the flexibility of this approach, we realized an O-band nano-ridge laser containing three In0.45Ga0.55As quantum wells, which are pseudomorphically strained to an In0.25Ga0.75As nano-ridge base. The demonstration of an optically pumped nano-ridge laser operating around 1300 nm underlines the potential of this cost-efficient and highly scalable integration approach for silicon photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...