Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 289(5488): 2320-3, 2000 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-11009411

RESUMO

Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction nu = 1/3) and spin-unpolarized (nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.

2.
Science ; 274(5291): 1332-5, 1996 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-8910263

RESUMO

Individual quantum dots are often referred to as "artificial atoms." Two tunnel-coupled quantum dots can be considered an "artificial molecule." Low-temperature measurements were made on a series double quantum dot with adjustable interdot tunnel conductance that was fabricated in a gallium arsenide-aluminum gallium arsenide heterostructure. The Coulomb blockade was used to determine the ground-state charge configuration within the "molecule" as a function of the total charge on the double dot and the interdot polarization induced by electrostatic gates. As the tunnel conductance between the two dots is increased from near zero to 2e2/h (where e is the electron charge and h is Planck's constant), the measured conductance peaks of the double dot exhibit pronounced changes in agreement with many-body theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...