Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(11)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625747

RESUMO

Just like the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using 2 human PCa tissue microarray cohorts, we first demonstrate that nuclear ERα expression was heterogeneous among patients, being detected in only half of the tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimicked the androgen transcriptional response and activated specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprogrammed PCa metabolism, was associated with disease progression, and could be targeted for therapeutic purposes.


Assuntos
Proliferação de Células , Progressão da Doença , Receptor alfa de Estrogênio , Estrogênios , Neoplasias da Próstata , Transdução de Sinais , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Masculino , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
2.
Pharmacology ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643765

RESUMO

INTRODUCTION: Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS: Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS: The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-ß, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-ß injection; (3) The non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-ß; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION: These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-ß.

3.
Viruses ; 15(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140675

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 (ß-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying ß-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1ß, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates ß-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.


Assuntos
Vírus da Hepatite Murina , Pneumonia , Camundongos , Humanos , Animais , Vitamina D , Pandemias/prevenção & controle , Vírus da Hepatite Murina/fisiologia , SARS-CoV-2 , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Dieta
4.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539861

RESUMO

Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.


Assuntos
Regulação da Expressão Gênica , Células Intersticiais do Testículo , Humanos , Masculino , Linhagem Celular , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
BMC Biol ; 21(1): 36, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797789

RESUMO

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Assuntos
COVID-19 , Testículo , Tropismo Viral , Animais , Humanos , Masculino , Angiotensina II/metabolismo , Chlorocebus aethiops , COVID-19/patologia , SARS-CoV-2 , Testículo/imunologia , Testículo/virologia , Células Vero
6.
Int Immunopharmacol ; 115: 109583, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610330

RESUMO

Nephrotic syndrome (NS) is associated with kidney dysfunction and is an important cause of morbidity and mortality in industrialized countries. Here, we evaluated the effects of the phosphodiesterase-4 (PDE-4) inhibitors rolipram and roflumilast on a doxorubicin-induced NS model. Early-stage rolipram treatment preserved glomerular filtration barrier function, as indicated by reduced serum protein and albumin loss and the prevention of hypercholesterolemia. These effects were associated with reduced glomerular and tubular lesions and abrogated renal cell apoptosis. In addition, rolipram treatment reduced inflammation, which was characterized by a decrease in macrophage accumulation and reduced levels of CCL2 and TNF in the kidneys. Rolipram also reduced renal fibrosis, which was associated with decreased α-smooth muscle actin (α-SMA) area and increased metalloproteinase 9 (MMP9) activity in renal tissue. Late-stage rolipram or roflumilast treatment preserved glomerular filtration barrier function, as characterized by reduced serum albumin loss, decreased proteinuria, and the prevention of hypercholesterolemia. Importantly, only roflumilast treatment was associated with a reduction in glomerular and tubular lesions at this time point. In addition, both rolipram and roflumilast reduced renal tissue fibrosis and MMP9 activity in renal tissue.


Assuntos
Hipercolesterolemia , Nefropatias , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 4/farmacologia , Rolipram/farmacologia , Rolipram/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Metaloproteinase 9 da Matriz , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Modelos Animais de Doenças , Fibrose
8.
Cells ; 11(17)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36078125

RESUMO

Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.


Assuntos
Febre de Chikungunya , Inflamação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Artralgia , Febre de Chikungunya/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Receptores de Formil Peptídeo/metabolismo
9.
Front Immunol ; 13: 892114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967353

RESUMO

Kupffer cells are the primary liver resident immune cell responsible for the liver firewall function, including clearance of bacterial infection from the circulation, as they are strategically positioned inside the liver sinusoid with intimate contact with the blood. Disruption in the tissue-resident macrophage niche, such as in Kupffer cells, can lead to a window of susceptibility to systemic infections, which represents a significant cause of mortality in patients with acetaminophen (APAP) overdose-induced acute liver injury (ALI). However, how Kupffer cell niche disruption increases susceptibility to systemic infections in ALI is not fully understood. Using a mouse model of ALI induced by APAP overdose, we found that Kupffer cells upregulated the apoptotic cell death program and were markedly reduced in the necrotic areas during the early stages of ALI, opening the niche for the infiltration of neutrophils and monocyte subsets. In addition, during the resolution phase of ALI, the remaining tissue macrophages with a Kupffer cell morphology were observed forming replicating cell clusters closer to necrotic areas devoid of Kupffer cells. Interestingly, mice with APAP-induced liver injury were still susceptible to infections despite the dual cellular input of circulating monocytes and proliferation of remaining Kupffer cells in the damaged liver. Therapy with bone marrow-derived macrophages (BMDM) was shown to be effective in occupying the niche devoid of Kupffer cells following APAP-induced ALI. The rapid BMDM migration to the liver and their positioning within necrotic areas enhanced the healing of the tissue and restored the liver firewall function after BMDM therapy. Therefore, we showed that disruption in the Kupffer cell niche and its impaired function during acute liver injury are key factors for the susceptibility to systemic bacterial infections. In addition, modulation of the liver macrophage niche was shown to be a promising therapeutic strategy for liver injuries that reduce the Kupffer cell number and compromise the organ function.


Assuntos
Acetaminofen , Células de Kupffer , Acetaminofen/efeitos adversos , Humanos , Células de Kupffer/metabolismo , Fígado , Macrófagos , Monócitos , Necrose/metabolismo
10.
Cell Immunol ; 372: 104476, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033752

RESUMO

Rheumatoid arthritis(RA) is a debilitating chronic inflammatory disease. Suppressors of Cytokine Signaling(SOCS) proteins regulate homeostasis and pathogenesis in several diseases. The intersection between RA pathophysiology and SOCS2 is unclear. Herein, we investigated the roles of SOCS2 during the development of an experimental antigen-induced arthritis(AIA). In wild type mice, joint SOCS2 expression was reduced during AIA development. At the peak of inflammation, SOCS2-/- mice presented with reduced numbers of infiltrated cells in their joints. At the late phase of AIA, however, exhibited increased adhesion/infiltration of neutrophils, macrophages, CD4+-T cells, CD4+CD8+-T cells, and CD4-CD8--T cells associated with elevated IL-17 and IFN-γ levels, joint damage, proteoglycan loss, and nociception. SOCS2 deficiency resulted in lower numbers of apoptotic neutrophils and reduced efferocytosis. The present study demonstrated the vital role of SOCS2 during the development and resolution of an experimental RA model. Hence, this protein may be a novel therapeutic target for this disorder.


Assuntos
Artrite Experimental/etiologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Imunidade Adaptativa , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Adesão Celular , Progressão da Doença , Endocitose/imunologia , Imunidade Inata , Leucócitos/imunologia , Leucócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia , Baço/patologia , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/genética
11.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34874920

RESUMO

Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2-dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.


Assuntos
Angiotensina I , Macrófagos , Monócitos , Fragmentos de Peptídeos , Fagocitose , Proto-Oncogene Mas/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peritonite , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Fenótipo , Receptores CCR2/metabolismo
12.
Mol Cell Endocrinol ; 542: 111519, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843900

RESUMO

GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.


Assuntos
Espermatogônias , Testículo , Animais , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Mutação/genética , Túbulos Seminíferos , Espermatogônias/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
13.
J Virol ; 95(22): e0127621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34495692

RESUMO

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Assuntos
Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Pulmão/patologia , Vírus da Hepatite Murina/patogenicidade , Animais , Linhagem Celular , Contenção de Riscos Biológicos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Inflamação , Fígado/patologia , Fígado/virologia , Pulmão/virologia , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Microb Pathog ; 158: 105010, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126224

RESUMO

Amebiasis is the most severe protozoan infection affecting the human intestine, and the second leading cause of death among parasitic diseases. The mechanisms of amoebic virulence factors acquisition are poorly understood, and there are few studies showing the interaction between Entamoeba dispar and bacteria. Salmonella enterica subsp. enterica serovar typhimurium is also a common cause of gastroenteritis in humans. Considering the high rates of amebiasis and salmonellosis, it is possible that these diseases may co-exist in the human intestine, leading to co-infection. Due to the scarcity of studies showing the influence of enteropathogenic bacteria on amoebic virulence, our research group proposed to evaluate the impact of S. typhimurium on E. dispar trophozoites. We assessed whether co-infection of S. typhimurium and E. dispar can change the progression of amoebic colitis, and the inflammatory response profile in the caecum mucosa, using a co-infection experimental model in rats. In vitro assays was used to investigate whether S. typhimurium induces changes in amoebic virulence phenotype. In the present work, we found that S. typhimurium co-infection exacerbates amoebic colitis and intestinal inflammation. The in vitro association of S. typhimurium and E. dispar trophozoites contributed to increase the expression of amoebic virulence factors. Also, we demonstrated, for the first time, the cysteine proteinase 5 expression in E. dispar MCR, VEJ and ADO strains, isolated in Brazil. Together, our results show that S. typhimurium and E. dispar co-infection worsens amoebic colitis, possibly by increasing the expression of amoebic virulence factors.


Assuntos
Coinfecção , Colite , Entamoeba , Salmonelose Animal , Salmonella enterica , Animais , Humanos , Ratos , Salmonella , Sorogrupo , Fatores de Virulência
15.
PLoS Negl Trop Dis ; 15(5): e0009425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048439

RESUMO

Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction.


Assuntos
Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/virologia , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética
16.
Environ Pollut ; 286: 117296, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971473

RESUMO

Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.


Assuntos
Disruptores Endócrinos , Neoplasias Bucais , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Camundongos , Mucosa Bucal , Neoplasias Bucais/induzido quimicamente , Fenóis/toxicidade
17.
Front Pharmacol ; 12: 662308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995086

RESUMO

Biochanin A (BCA) is a natural organic compound of the class of phytochemicals known as flavonoids and isoflavone subclass predominantly found in red clover (Trifolium pratense). It has anti-inflammatory activity and some pro-resolving actions, such as neutrophil apoptosis. However, the effect of BCA in the resolution of inflammation is still poorly understood. In this study, we investigated the effects of BCA on the neutrophilic inflammatory response and its resolution in a model of antigen-induced arthritis. Male wild-type BALB/c mice were treated with BCA at the peak of the inflammatory process (12 h). BCA decreased the accumulation of migrated neutrophils, and this effect was associated with reduction of myeloperoxidase activity, IL-1ß and CXCL1 levels, and the histological score in periarticular tissues. Joint dysfunction, as seen by mechanical hypernociception, was improved by treatment with BCA. The resolution interval (Ri) was also quantified, defining profiles of acute inflammatory parameters that include the amplitude and duration of the inflammatory response monitored by the neutrophil infiltration. BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. These effects of BCA were prevented by H89, an inhibitor of protein kinase A (PKA) and G15, a selective G protein-coupled receptor 30 (GPR30) antagonist. In line with the in vivo data, BCA also increased the efferocytic ability of murine bone marrow-derived macrophages. Collectively, these data indicate for the first time that BCA resolves neutrophilic inflammation acting in key steps of the resolution of inflammation, requiring activation of GPR30 and via stimulation of cAMP-dependent signaling.

18.
J Steroid Biochem Mol Biol ; 209: 105832, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596463

RESUMO

Low circulating levels of vitamin D are common at older ages and have been linked to an increased risk of prostate disease, including cancer. However, it has not yet been determined whether aging affects the ability of prostate cells to locally metabolize vitamin D into its active metabolite calcitriol and thus mediate the vitamin D signaling in autocrine and paracrine ways. By using a suitable rat model to interrogate spontaneous prostatic modifications over the course of aging, here we showed that both CYP27B1 and CYP24A1 enzymes, which are key players respectively involved with calcitriol synthesis and deactivation, were highly expressed in the prostate epithelium. Furthermore, as the animals aged, a drastic reduction of CYP27B1 levels was detected in total protein extracts and especially in epithelial areas of lesions, including tumors. On the other hand, CYP24A1 expression significantly increased with aging and remained elevated even in altered epithelia. Such intricate unbalance in regard to vitamin D metabolizing enzymes was strongly associated with reduced bioavailability of calcitriol in the senile prostate, which in addition to decreased expression of the vitamin D receptor, further limits the protective actions mediated by vitamin D signaling. This evidence was corroborated by the increased proliferative activity exactly at sites of lesions where the factors implicated with calcitriol synthesis and responsiveness had its expression inhibited. Taken together, our results emphasize a set of modifications over the course of aging with a high potential to hamper vitamin D signaling on the prostate. These findings highlight a crosstalk between vitamin D, aging, and prostate carcinogenesis, offering new potential targets in the prevention of malignancies and other aging-related disorders arising in the gland.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Envelhecimento , Próstata/patologia , Vitamina D3 24-Hidroxilase/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Proliferação de Células , Masculino , Próstata/metabolismo , Ratos , Ratos Wistar , Vitamina D3 24-Hidroxilase/genética
19.
Eur J Pharmacol ; 896: 173900, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545158

RESUMO

Tissue injury results in the release of inflammatory mediators, including a cascade of nociceptive substances, which contribute to development of hyperalgesia. In addition, during this process endogenous analgesic substances are also peripherally released with the aim of controlling the hyperalgesia. Thus, the present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the opioid system. Thus, male Swiss mice and the paw withdrawal test were used. All substances were injected by the intraplantar route. Carrageenan, TNF-α, CXCL-1, IL1-ß, NE and PGE2 induced hyperalgesia. Selectives µ (clocinamox), δ (naltrindole) and κ (norbinaltorphimine, nor-BNI) and non-selective (naloxone) opioid receptor antagonists potentiated the hyperalgesia induced by carrageenan, TNF-α, CXCL-1 and IL1-ß. In contrast, when the enzyme N-aminopeptidase involved in the degradation of endogenous opioid peptides was inhibited by bestatin, the hyperalgesia was significantly reduced. In addition, the western blotting assay indicated that the expression of the opioid δ receptor was increased after intraplantar injection of carrageenan. The data obtained in this work corroborate the hypothesis that TNF-α, CXCL-1 and IL-ß cause, in addition to hyperalgesia, the release of endogenous substances such as opioid peptides, which in turn exert endogenous control over peripheral inflammatory pain.


Assuntos
Quimiocina CXCL1 , Hiperalgesia/induzido quimicamente , Interleucina-1beta , Nociceptividade , Dor Nociceptiva/induzido quimicamente , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Fator de Necrose Tumoral alfa , Animais , Carragenina , Dinoprostona , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/prevenção & controle , Norepinefrina , Receptores Opioides/efeitos dos fármacos , Transdução de Sinais
20.
Andrology ; 8(5): 1375-1386, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32157817

RESUMO

BACKGROUND: Prostate cancer remains one of the most common cancers in men. Macrophages are thought to be important regulators in cancers, and their potential involvement in prostate cancer should not be overlooked. Therefore, the association between macrophages and the pre-tumorous changes in prostate epithelium during aging deserves further investigation. OBJECTIVES: We sought to investigate whether macrophages would be recruited into the prostate epithelium that display pathological lesions commonly found during aging. MATERIALS AND METHODS: Prostates of aging rats, with and without treatment with a combination of testosterone and estradiol, were examined for premalignant and malignant epithelial lesions. For comparison, prostates of castrated rats were also investigated. RESULTS: Intraepithelial macrophages were found restricted to areas of premalignant and malignant lesions. An unprecedented interaction between macrophages and basal cells was observed in the aging pathological lesions. The intraepithelial macrophages were associated with autophagy, in contrast to those found after castration. In prostate lesions, the intraepithelial macrophages had TAM phenotype (CD68+/iNOS+/CD206+/ARG+), denoting a possible involvement in cancer progression. However, M2 macrophages (CD68+/CD163+) were recruited into the epithelium after castration, possibly to phagocytize cells undergoing apoptosis. DISCUSSION AND CONCLUSION: In conclusion, macrophages were recruited into the prostate epithelium and presented diverse phenotypes and morphology, consistent with changes reflected in the hormonal environment. Macrophages with the TAM phenotype were found restricted to areas of premalignant and malignant lesions in aging prostates, denoting a possible involvement in cancer progression. In contrast, M2 macrophages were found in the regressed epithelium after castration.


Assuntos
Envelhecimento/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Macrófagos Associados a Tumor/patologia , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...