Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289661

RESUMO

As a biologic reservoir of Mycobacterium tuberculosis (M. tb), one-quarter of the world population is infected with the well-known latent tuberculosis (LTBI). About 5-10% of LTBI patients will progress to active disease in the first years after primary infection and, despite using the recommended treatment, 20% can still reactivate the infection. A new LTBI treatment could minimize adverse effects and antibiotic resistance that can occur when the same drug is used to treat the latent and active disease. New hydrazones were evaluated, and they showed great inhibitory activity against intramacrophagic and non-replicating M. tb, commonly found at this stage of infection, in addition to bactericidal and narrow-spectrum activity. When tested against eukaryotic cells, the hydrazones showed great safety at different exposure times. In vitro, these compounds performed better than isoniazid and could be considered new candidates for LTBI treatment, which may promote greater engagement in its prescription and adherence.

2.
J Microencapsul ; 39(1): 61-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34984941

RESUMO

This study aimed to encapsulate and characterise a potential anti-tuberculosis copper complex (CuCl2(INH)2.H2O:I1) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested. The physicochemical characterisations were performed by DLS, TEM, FTIR, encapsulation efficiency and, in vitro release studies. Encapsulation of I1 in PN-NE30D, PN-E100, and PN-S100 was 26.3%, 94.5%, 22.6%, respectively. The particle size and zeta potentials were 82.3 nm and -24.5 mV for PNs-NE30D, 304.4 nm and +18.7 mV for PNs-E100, and 517.9 nm and -6.9 mV for PNs-S100, respectively. All PDIs were under 0.5. The formulations showed an I1 controlled release at alkaline pH with 29.7% from PNs-NE30D, 7.9% from PNs-E100 and, 28.1% from PNs-S100 at 1 h incubation. PNs were stable for at least 3 months. Particularly, PNs-NE30D demonstrated moderate inhibition of M. tuberculosis and low cytotoxic activity. None of the PNs induced mutagenicity.


Assuntos
Cobre , Nanopartículas , Antibacterianos , Cobre/farmacologia , Mutagênicos , Tamanho da Partícula , Polímeros
3.
Tuberculosis (Edinb) ; 128: 102087, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34022507

RESUMO

Mycobacterium tuberculosis is the major etiological agent for tuberculosis (TB), which is the leading cause of single pathogen infection-related deaths worldwide. The End TB Strategy of the World Health Organization aimed to decrease the incidence of TB by 20% between 2015 and 2020, which was not achieved. Here, the growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) complex ([Fe(phen)3]2+), a known commercially available cheap chemical substance, were examined. The best in vitro results showed great activity with MIC ranging from 0.77 to 3.06 µM against clinical strains and at low pH (mimicking the granuloma) with MIC of 0.21 µM. Preliminary safety analysis revealed that the complex did not exhibit cytotoxic activity against different cell lines or mutagenic activity in vitro. The complex was orally bioavailable after 2 h of administration in vivo. Additionally, the results of the acute toxicity test revealed that the complex did not exert toxic effects in female BALB/c mice. The mechanism of action was performed using D29 mycobacteriophages where the treatment with different concentrations of the complex inhibited viral protein synthesis, which indicated that the anti-TB mechanisms of the complex involve protein synthesis inhibition. These findings suggested that [Fe(phen)3]2+ is a potential novel therapeutic for TB.


Assuntos
Compostos Férricos , Mycobacterium tuberculosis , Fenantrolinas , Animais , Feminino , Humanos , Linhagem Celular , Compostos Férricos/farmacologia , Células Hep G2 , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Fenantrolinas/farmacologia , Testes de Toxicidade Aguda , Tuberculose
4.
J Toxicol Environ Health A ; 84(14): 569-581, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33730993

RESUMO

Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fabaceae/química , Manosídeos/farmacologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Animais , Doxorrubicina/toxicidade , Células Hep G2 , Humanos , Masculino , Metanossulfonato de Metila/toxicidade , Camundongos , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/farmacologia , Salmonella typhimurium/efeitos dos fármacos
5.
Mol Pharm ; 17(7): 2287-2298, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515970

RESUMO

Helicobacter pylori inhabits the gastric epithelium and can promote the development of gastric disorders, such as peptic ulcers, acute and chronic gastritis, mucosal lymphoid tissue (MALT), and gastric adenocarcinomas. To use nanotechnology as a tool to increase the antibacterial activity of silver I [Ag(I)] compounds, this study suggests a new strategy for H. pylori infections, which have hitherto been difficult to control. [Ag (PhTSC·HCl)2] (NO3)·H2O (compound 1) was synthesized, characterized, and loaded into polymeric nanoparticles (PN1). PN1 had been developed by nanoprecipitation with poly(ε-caprolactone) polymer and poloxamer 407 surfactant. System characterization assays showed that the PNs had adequate particle sizes and ζ-potentials. Transmission electron microscopy confirmed the formation of polymeric nanoparticles (PNs). Compound 1 had a minimum inhibitory concentration for H. pylori of 3.90 µg/mL, which was potentiated to 0.781 µg/mL after loading. The minimum bactericidal concentration of 7.81 µg/mL was potentiated 5-fold to 1.56 µg/mL in PN. Compound 1 loaded in PN1 displayed better activity for H. pylori biofilm formation and mature biofilm. PN1 reduced the toxicity of compound 1 to MRC-5 cells. Loading compound 1 into PN1 inhibited the mutagenicity of the free compound. In vivo, the system allowed survival of Galleria mellonella larvae at a concentration of 200 µg/mL. This is the first demonstration of the antibacterial activity of a silver complex enclosed in polymeric nanoparticles against H. pylori.


Assuntos
Antibacterianos/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Nanopartículas Metálicas/química , Polímeros/química , Compostos de Prata/farmacologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Compostos de Prata/química
6.
J Toxicol Environ Health A ; 81(5): 116-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29286884

RESUMO

In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS: 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.


Assuntos
Antimutagênicos/farmacologia , Diterpenos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Animais , Ensaio Cometa , Cricetulus , Fibroblastos/efeitos dos fármacos , Pulmão , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade
7.
Expert Opin Ther Pat ; 27(3): 269-282, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27796146

RESUMO

INTRODUCTION: Tuberculosis, an infectious disease, has caused more deaths worldwide than any other single infectious disease, killing more than 1.5 million people each year; equating to 4,100 deaths a day. In the past 60 years, no new drugs have been added to the first line regimen, in spite of the fact that thousands of papers have been published on drugs against tuberculosis and hundreds of drugs have received patents as new potential products. Thus, there is undoubtedly an urgent need for the deployment of new effective drugs against tuberculosis. Areas covered: This review brings to the reader the opportunity to understand the chemical and biological characteristics of all patented anti-tuberculosis drugs in North America, Europe, Japan, and Russia. The 116 patents discussed here concern new molecules in the early or advanced phase of development in the last 16 years. Expert opinion: Of all 116 patents, only one developed drug, bedaquiline, is used, and then, only in specific cases. Another three drugs are in clinical studies. However, many other compounds, for which there are in vitro and in vivo studies, seem to fulfil the requisite criteria to be a new anti-tuberculosis agent. However, why are they not in use? Why were so many studies interrupted? Why is there no more news for many of these drugs?


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/uso terapêutico , Diarilquinolinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Patentes como Assunto , Tuberculose/epidemiologia
8.
Regul Toxicol Pharmacol ; 72(3): 506-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002624

RESUMO

In the neotropical savannah, Astronium species are used in popular medicine to treat allergies, inflammation, diarrhea and ulcers. Given that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the mutagenic and antimutagenic activities of hydroalcoholic extracts of Astronium spp. The mutagenicity was determined by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102. The antimutagenicity was tested against the direct-acting and indirect-acting mutagens. The results showed that none of the extracts induce any increase in the number of revertants, demonstrating the absence of mutagenic activity. On the other hand, the results on the antimutagenic potential showed a moderate inhibitory effect against NPD and a strong protective effect against B[a]P and AFB1. This study highlights the importance of screening species of Astronium for new medicinal compounds. The promising results obtained open up new avenues for further study and provide a better understanding the mechanisms by which these species act in protecting DNA from damage. However, further pharmacological and toxicological investigations of crude extracts of Astronium spp., as well as of its secondary metabolites, are necessary to determine the mechanism(s) of action to guarantee their safer and more effective application to human health.


Assuntos
Anacardiaceae , Antimutagênicos/farmacologia , Extratos Vegetais/farmacologia , Testes de Mutagenicidade , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA