Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177779

RESUMO

Despite the existence of over half million species of plant-eating insects, our planet remains predominantly green. In fact, susceptibility to herbivory is the exception, as plants are resistant to most insect species. This phenomenon is known as nonhost resistance (NHR), where every individual of a plant species is resistant to all variants of a pest or pathogen. While NHR represents the most common and durable outcome of the plant immune system, several aspects of this type of plant defence remains elusive, particularly in plant-insect interactions. In this review, we clarify the concepts of NHR in plant-insect interaction. We emphasize that NHR is a phenomenon arising as a consequence of effective plant defences providing invulnerability to most insect herbivores. This underscores that NHR is one of the main ecological features delimiting the range of plant-insect interactions on Earth. We further highlight the traits and molecular components of the plant immune system known to participate in NHR against insects. Finally, we discuss how NHR can be leveraged as a tool to develop pest resilient crops. Given the significant threat insects pose to global food security, research in plant NHR represents a crucial focal point with immense potential for ensuring food security worldwide.

2.
Front Mol Biosci ; 9: 890654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081849

RESUMO

Antimicrobial peptides are small molecules, up to 10 kDa, present in all kingdoms of life, including in plants. Several studies report that these molecules have a broad spectrum of activity, including antibacterial, antifungal, antiviral, and insecticidal activity. Thus, they can be employed in agriculture as alternative tools for phytopathogen and pest control. However, the application of peptides in agriculture can present challenges, such as loss of activity due to degradation of these molecules, off-target effects, and others. In this context, nanotechnology can offer versatile structures, including metallic nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others, which might act both in protection and in release of AMPs. Several polymers and biomaterials can be employed for the development of nanostructures, such as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers, and others. This review addresses the versatility of NanoAMPs (Nanoparticles in association with antimicrobial peptides), and their potential applications in agribusiness, as an alternative for the control of phytopathogens in crops.

5.
Plant Mol Biol ; 109(4-5): 469-482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34843032

RESUMO

KEY MESSAGE: Chemical defenses are imperative for plant survival, but their production is often associated with growth restrictions. Here we review the most recent theories to explain this complex dilemma of plants. Plants are a nutritional source for a myriad of pests and pathogens that depend on green tissues to complete their life cycle. Rather than remaining passive victims, plants utilize an arsenal of chemical defenses to fend off biotic attack. While the deployment of such barriers is imperative for survival, the production of these chemical defenses is typically associated with negative impacts on plant growth. Here we discuss the most recent theories which explain this highly dynamic growth versus defense dilemma. Firstly, we discuss the hypothesis that the antagonism between the accumulation of chemical defenses and growth is rooted in the evolutionary history of plants and may be a consequence of terrestrialization. Then, we revise the different paradigms available to explain the growth versus chemical defense antagonism, including recent findings that update these into more comprehensive and plausible theories. Finally, we highlight state-of-the-art strategies that are now allowing the activation of growth and the concomitant production of chemical barriers in plants. Growth versus chemical defense antagonism imposes large ecological and economic costs, including increased crop susceptibility to pests and pathogens. In a world where these plant enemies are the main problem to increase food production, we believe that this review will summarize valuable information for future studies aiming to breed highly defensive plants without the typical accompanying penalties to growth.


Assuntos
Melhoramento Vegetal , Plantas , Evolução Biológica , Desenvolvimento Vegetal
13.
Plant Physiol ; 182(4): 1808-1809, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253332
14.
Cell Mol Life Sci ; 76(18): 3525-3542, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101936

RESUMO

While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.


Assuntos
Antivirais/química , Peptídeos/química , Anfíbios/metabolismo , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Artrópodes/metabolismo , Vírus da Dengue/efeitos dos fármacos , HIV/efeitos dos fármacos , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Plantas/metabolismo , Simplexvirus/efeitos dos fármacos
15.
Biochem J ; 475(21): 3359-3375, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413680

RESUMO

Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Modelos Moleculares , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Plantas/microbiologia , Conformação Proteica
16.
J Exp Bot ; 69(21): 4997-5011, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30099553

RESUMO

Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Imunidade Vegetal/genética , Antibiose/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia
17.
J Integr Plant Biol ; 53(12): 920-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22040287

RESUMO

It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.


Assuntos
Adaptação Fisiológica , Fitocromo/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Estresse Fisiológico , Herbivoria/fisiologia
18.
Plant Signal Behav ; 5(3): 267-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20037476

RESUMO

Hormones are molecules involved in virtually every step of plant development and studies in this field have been shaping plant physiology for more than a century. The model plant Arabidopsis thaliana, long used as a tool to study plant hormones, lacks significant important developmental traits, such as fleshy climacteric fruit, compound leaf and multicellular trichomes, suggesting the necessity for alternative plant models. An attractive option often used is tomato, a species also of major economic importance, being ideal to bring together basic and applied plant sciences. The tomato Micro-Tom (MT) cultivar makes it possible to combine the direct benefits of studying a crop species with the fast life cycle and small size required for a suitable biological model. However, few obscure questions are constantly addressed to MT, creating a process herein called "MT mystification". In this work we present evidence clarifying these questions and show the potential of MT, aiming to demystify it. To corroborate our ideas we showed that, by making use of MT, our laboratory demonstrated straightforwardly new hormonal functions and also characterized a novel antagonistic hormonal interaction between jasmonates and brassinosteroids in the formation of anti-herbivory traits in tomato.

19.
J Exp Bot ; 60(15): 4347-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19734261

RESUMO

Given the susceptibility of tomato plants to pests, the aim of the present study was to understand how hormones are involved in the formation of tomato natural defences against insect herbivory. Tomato hormone mutants, previously introgressed into the same genetic background of reference, were screened for alterations in trichome densities and allelochemical content. Ethylene, gibberellin, and auxin mutants indirectly showed alteration in trichome density, through effects on epidermal cell area. However, brassinosteroids (BRs) and jasmonates (JAs) directly affected trichome density and allelochemical content, and in an opposite fashion. The BR-deficient mutant dpy showed enhanced pubescence, zingiberene biosynthesis, and proteinase inhibitor expression; the opposite was observed for the JA-insensitive jai1-1 mutant. The dpy x jai1-1 double mutant showed that jai1-1 is epistatic to dpy, indicating that BR acts upstream of the JA signalling pathway. Herbivory tests with the poliphagous insect Spodoptera frugiperda and the tomato pest Tuta absoluta clearly confirmed the importance of the JA-BR interaction in defence against herbivory. The study underscores the importance of hormonal interactions on relevant agricultural traits and raises a novel biological mechanism in tomato that may differ from the BR and JA interaction already suggested for Arabidopsis.


Assuntos
Ciclopentanos/metabolismo , Insetos/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Característica Quantitativa Herdável , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Animais , Ingestão de Alimentos , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA