Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Genet ; 43(5): 570-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22497237

RESUMO

Major objectives of the poultry industry are to increase meat production and to reduce carcass fatness, mainly abdominal fat. Information on growth performance and carcass composition are important for the selection of leaner meat chickens. To enhance our understanding of the genetic architecture underlying the chemical composition of chicken carcasses, an F(2) population developed from a broiler × layer cross was used to map quantitative trait loci (QTL) affecting protein, fat, water and ash contents in chicken carcasses. Two genetic models were applied in the QTL analysis: the line-cross and the half-sib models, both using the regression interval mapping method. Six significant and five suggestive QTL were mapped in the line-cross analysis, and four significant and six suggestive QTL were mapped in the half-sib analysis. A total of eleven QTL were mapped for fat (ether extract), five for protein, four for ash and one for water contents in the carcass using both analyses. No study to date has reported QTL for carcass chemical composition in chickens. Some QTL mapped here for carcass fat content match, as expected, QTL regions previously associated with abdominal fat in the same or in different populations, and novel QTL for protein, ash and water contents in the carcass are presented here. The results described here also reinforce the need for fine mapping and to perform multi-trait analyses to better understand the genetic architecture of these traits.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Carne/análise , Locos de Características Quantitativas , Animais , Composição Corporal , Mapeamento Cromossômico , Feminino , Masculino , Fenótipo
2.
Anim Genet ; 40(5): 729-36, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19466938

RESUMO

An F(2) population established by crossing a broiler male line and a layer line was used to map quantitative trait loci (QTL) affecting abdominal fat weight, abdominal fat percentage and serum cholesterol and triglyceride concentrations. Two genetic models, the line-cross and the half-sib, were applied in the QTL analysis, both using the regression interval method. Three significant QTL and four suggestive QTL were mapped in the line-cross analysis and four significant and four suggestive QTL were mapped in the half-sib analysis. A total of five QTL were mapped for abdominal fat weight, six for abdominal fat percentage and four for triglyceride concentration in both analyses. New QTL associated with serum triglyceride concentration were mapped on GGA5, GGA23 and GG27. QTL mapped between markers LEI0029 and ADL0371 on GGA3 for abdominal fat percentage and abdominal fat weight and a suggestive QTL on GGA12 for abdominal fat percentage showed significant parent-of-origin effects. Some QTL mapped here match QTL regions mapped in previous studies using different populations, suggesting good candidate regions for fine-mapping and candidate gene searches.


Assuntos
Adiposidade/genética , Galinhas/genética , Fenótipo , Locos de Características Quantitativas/genética , Abdome/anatomia & histologia , Animais , Mapeamento Cromossômico/veterinária , Cruzamentos Genéticos , Genótipo , Triglicerídeos/sangue
3.
Anim Genet ; 40(2): 200-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19170675

RESUMO

An F(2) resource population, derived from a broiler x layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F(2) chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Ração Animal , Animais , Peso Corporal/genética , Galinhas/anatomia & histologia , Mapeamento Cromossômico , Ingestão de Alimentos/genética , Feminino , Genótipo , Hibridização Genética , Intestinos/anatomia & histologia , Masculino , Locos de Características Quantitativas , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...