Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 219: 112794, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162180

RESUMO

Although toxic and dangerous, Phenylmethane (PhM) dyes have a variety of medicinal functions. To optimize the use of these dyes, it is essential to understand their interaction mechanism with proteins. Through surface plasmon resonance, we investigated the kinetics and thermodynamics of interaction between bovine lactoferrin (BLF) and PhM dyes at pH 7.4, which allowed elucidate the effect of the dyes' functional groups on the binding process. Negative ΔG° revealed that at thermodynamic equilibrium the formed [BLF-PhM]° complex was more stable than the free BLF and PhM molecules. The increase in the number of methyl groups in the PhM structure led to an increase in the rates of association (ka) and dissociation (kd) and the binding constant (Kb). A similar effect was observed when comparing methyl violet B (MVB) and methyl violet 6 B (MV6B), in which the charged MV6B structure promoted an increase in the ka, kd, and Kb values. By contrast, an increase in the number of phenyl groups (2-3 rings) led to a decrease in the Kb values. The [BLF-PhM]° formation was entropically driven, indicating that hydrophobic interactions are critical for stabilizing these complexes These results are beneficial for understanding the molecular dynamics of protein-dye interactions.

2.
Food Chem ; 366: 130612, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311236

RESUMO

The determination of the kinetics of inclusion processes is significant for the application of inclusion complexes as carriers for bioactive molecules. We determined the kinetic parameters of inclusion between modified ß-cyclodextrin (ß-CD-NH2) and the polyphenols resveratrol (RES) and its structural analog (RESAn1), using the real-time analysis of surface plasmon resonance. The association and dissociation rate constants (ka and kd) showed that RESAn1 inclusion and its dissociation from ß-CD-NH2 were faster than a similar process for RES ( [Formula: see text]  = 3.10∙104 ± 0.14 M-1s-1, [Formula: see text] =1.87∙103 ± 0.11 M-1s-1; [Formula: see text] =0.39 ± 0.02 s-1, [Formula: see text] =0.30 ± 0.02 s-1, at 25 °C). The activated complex formation was also affected by the structural differences between the polyphenols, as showed by the activation energies of the association step ( [Formula: see text] 14.81 ± 0.64 kJ∙mol-1, [Formula: see text] -15.01 ± 0.75 to 82.35 ± 4.47 kJ∙mol-1). These effects of polyphenol structural differences are due to the desolvation process of interacting molecules. These results elucidate the role of small group to the dynamics of the molecular inclusion of ß-CD.


Assuntos
Ciclodextrinas , Cinética , Polifenóis , Resveratrol , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA