Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(4): 2152-2160, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680726

RESUMO

Screen printing is one of the most used techniques for developing printed electronics. It stands out for its simplicity, scalability, and effectivity. Specifically, the manufacturing of hybrid integrated circuits has promoted the development of the technique, and the photovoltaic industry has enhanced the printing process by developing high-performance metallization pastes and high-end screens. In recent years, fine lines of 50 µm or smaller are about to be adopted in mass production, and screen printing has to compete with digital printing techniques such as inkjet printing, which can reach narrower lines. In this sense, this work is focused on testing the printing resolution of a high-performance stainless-steel screen with commercial conductive inks and functional lab-made inks based on reduced graphene oxide using an interdigitated structure. We achieved electrically conductive functional patterns with a minimum printing resolution of 40 µm for all inks.

2.
ACS Appl Mater Interfaces ; 14(13): 15494-15503, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324148

RESUMO

Materials sustainability is becoming increasingly relevant in every developed technology and, consequently, environmentally friendly solid polymer electrolytes (SPEs) based on gellan gum and different quantities of ionic liquid (IL) 1-ethyl-3-methyl-imidazolium-thiocyanate [Emim][SCN] have been prepared and applied in electrochromic devices (ECDs). The addition of the IL does not affect the crystalline phase of gellan gum, and the samples show a compact morphology, surface uniformity, no phase separation, and good distribution of the IL within the carrageenan matrix. The developed SPE are thermally stable up to ∼100 °C and show suitable mechanical properties. The most concentrated sample (39 wt % IL content) reaches a maximum ionic conductivity value of 6.0 × 10-3 S cm-1 and 1.8 × 10-2 S cm-1 at 30 and 90 °C, respectively. The electrochromic device (ECD) was fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as working electrode and the developed SPE was compared with an aqueous 0.1 M KNO3 solution. The electrochromic performance of the electrolyte was assessed in terms of spectroelectrochemistry, demonstrating a fully flexible ECD operating at voltages below 1.0 V. This novel electrolyte opens the door to the preparation of high performance sustainable ECD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...