Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929183

RESUMO

A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.

2.
Cancers (Basel) ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672480

RESUMO

Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We studied the metabolic effects of inhibiting GLS activity in T98G, LN229, and U87MG human glioblastoma cell lines by using the inhibitor CB-839. We performed metabolomics and isotope tracing experiments using U-13C-labeled Gln, as well as 15N-labeled Gln in the amide group, to determine the metabolic fates of Gln carbon and nitrogen atoms. In the presence of the inhibitor, the results showed an accumulation of Gln and lower levels of tricarboxylic acid cycle intermediates, and aspartate, along with a decreased oxidative labeling and diminished reductive carboxylation-related labeling of these metabolites. Additionally, CB-839 treatment caused decreased levels of metabolites from pyrimidine biosynthesis and an accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. The levels of some acetylated and methylated metabolites were significantly increased, including acetyl-carnitine, trimethyl-lysine, and 5-methylcytosine. In conclusion, we analyzed the metabolic landscape caused by the GLS inhibition of CB-839 in human glioma cells, which might lead to the future development of new combination therapies with CB-839.

3.
Neurochem Int ; 149: 105136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274381

RESUMO

Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Antioxidantes/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/metabolismo , Temozolomida/uso terapêutico , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia
4.
Fluids Barriers CNS ; 18(1): 30, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215285

RESUMO

BACKGROUND: Periventricular extracellular oedema, myelin damage, inflammation, and glial reactions are common neuropathological events that occur in the brain in congenital hydrocephalus. The periventricular white matter is the most affected region. The present study aimed to identify altered molecular and cellular biomarkers in the neocortex that can function as potential therapeutic targets to both treat and evaluate recovery from these neurodegenerative conditions. The hyh mouse model of hereditary hydrocephalus was used for this purpose. METHODS: The hyh mouse model of hereditary hydrocephalus (hydrocephalus with hop gait) and control littermates without hydrocephalus were used in the present work. In tissue sections, the ionic content was investigated using energy dispersive X-ray spectroscopy scanning electron microscopy (EDS-SEM). For the lipid analysis, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) was performed in frozen sections. The expression of proteins in the cerebral white matter was analysed by mass spectrometry. The oligodendrocyte progenitor cells (OPCs) were studied with immunofluorescence in cerebral sections and whole-mount preparations of the ventricle walls. RESULTS: High sodium and chloride concentrations were found indicating oedema conditions in both the periventricular white matter and extending towards the grey matter. Lipid analysis revealed lower levels of two phosphatidylinositol molecular species in the grey matter, indicating that neural functions were altered in the hydrocephalic mice. In addition, the expression of proteins in the cerebral white matter revealed evident deregulation of the processes of oligodendrocyte differentiation and myelination. Because of the changes in oligodendrocyte differentiation in the white matter, OPCs were also studied. In hydrocephalic mice, OPCs were found to be reactive, overexpressing the NG2 antigen but not giving rise to an increase in mature oligodendrocytes. The higher levels of the NG2 antigen, diacylglycerophosphoserine and possibly transthyretin in the cerebrum of hydrocephalic hyh mice could indicate cell reactions that may have been triggered by inflammation, neurocytotoxic conditions, and ischaemia. CONCLUSION: Our results identify possible biomarkers of hydrocephalus in the cerebral grey and white matter. In the white matter, OPCs could be reacting to acquire a neuroprotective role or as a delay in the oligodendrocyte maturation.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Biomarcadores/metabolismo , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Hidrocefalia/genética , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Substância Branca/metabolismo , Substância Branca/patologia
5.
J Biomed Sci ; 28(1): 14, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610185

RESUMO

BACKGROUND: Glutaminase isoenzymes GLS and GLS2 play apparently opposing roles in cancer: GLS acts as an oncoprotein, while GLS2 (GAB isoform) has context specific tumour suppressive activity. Some microRNAs (miRNAs) have been implicated in progression of tumours, including gliomas. The aim was to investigate the effect of GLS and GAB expression on both miRNAs and oxidative status in glioblastoma cells. METHODS: Microarray profiling of miRNA was performed in GLS-silenced LN229 and GAB-transfected T98G human glioblastoma cells and their wild-type counterparts. Results were validated by real-time quantitative RT-PCR. Oxidative status and antioxidant enzymes were determined by spectrophotometric or fluorescence assays in GLS-silenced LN229 and T98G, and GAB-transfected LN229 and T98G. RESULTS: MiRNA-146a-5p, miRNA-140-3p, miRNA-21-5p, miRNA-1260a, and miRNA-92a-3p were downregulated, and miRNA-1246 was upregulated when GLS was knocked down. MiRNA-140-3p, miRNA-1246, miRNA-1260a, miRNA-21-5p, and miRNA-146a-5p were upregulated when GAB was overexpressed. Oxidative status (lipid peroxidation, protein carbonylation, total antioxidant capacity, and glutathione levels), as well as antioxidant enzymes (catalase, superoxide dismutase, and glutathione reductase) of silenced GLS glioblastoma cells and overexpressed GAB glioblastoma cells significantly changed versus their respective control glioblastoma cells. MiRNA-1246, miRNA-1260a, miRNA-146a-5p, and miRNA-21-5p have been characterized as strong biomarkers of glioblastoma proliferation linked to both GLS silencing and GAB overexpression. Total glutathione is a reliable biomarker of glioblastoma oxidative status steadily associated to both GLS silencing and GAB overexpression. CONCLUSIONS: Glutaminase isoenzymes are related to the expression of some miRNAs and may contribute to either tumour progression or suppression through certain miRNA-mediated pathways, proving to be a key tool to switch cancer proliferation and redox status leading to a less malignant phenotype. Accordingly, GLS and GAB expression are especially involved in glutathione-dependent antioxidant defence.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glutaminase/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Linhagem Celular Tumoral , Regulação para Baixo , Glutaminase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Regulação para Cima
7.
Arch Toxicol ; 94(8): 2603-2623, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681190

RESUMO

Targeted therapies against cancer have improved both survival and quality of life of patients. However, metabolic rewiring evokes cellular mechanisms that reduce therapeutic mightiness. Resistant cells generate more glutathione, elicit nuclear factor erythroid 2-related factor 2 (NRF2) activation, and overexpress many anti-oxidative genes such as superoxide dismutase, catalase, glutathione peroxidase, and thioredoxin reductase, providing stronger antioxidant capacity to survive in a more oxidative environment due to the sharp rise in oxidative metabolism and reactive oxygen species generation. These changes dramatically alter tumour microenvironment and cellular metabolism itself. A rational design of therapeutic combination strategies is needed to flatten cellular homeostasis and accomplish a drop in cancer development. Context-dependent glutaminase isoenzymes show oncogenic and tumour suppressor properties, being mainly associated to MYC and p53, respectively. Glutaminases catalyze glutaminolysis in mitochondria, regulating oxidative phosphorylation, redox status and cell metabolism for tumour growth. In addition, the substrate and product of glutaminase reaction, glutamine and glutamate, respectively, can work as signalling molecules moderating redox and bioenergetic pathways in cancer. Novel synergistic approaches combining glutaminase inhibition and redox-dependent modulation are described in this review. Pharmacological or genetic glutaminase regulation along with oxidative chemotherapy can help to improve the design of combination strategies that escalate the rate of therapeutic success in cancer patients.


Assuntos
Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Neoplasias/enzimologia , Estresse Oxidativo , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Metabolismo Energético , Inibidores Enzimáticos/uso terapêutico , Glutamina/antagonistas & inibidores , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Microambiente Tumoral
8.
Sci Rep ; 10(1): 2259, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042057

RESUMO

Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.


Assuntos
Carcinogênese/metabolismo , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Glutaminase/fisiologia , Neoplasias/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Células Hep G2 , Humanos
9.
Curr Med Chem ; 27(32): 5317-5339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31038055

RESUMO

BACKGROUND: Metabolic reprogramming of tumours is a hallmark of cancer. Among the changes in the metabolic network of cancer cells, glutaminolysis is a key reaction altered in neoplasms. Glutaminase proteins control the first step in glutamine metabolism and their expression correlates with malignancy and growth rate of a great variety of cancers. The two types of glutaminase isoenzymes, GLS and GLS2, differ in their expression patterns and functional roles: GLS has oncogenic properties and GLS2 has been described as a tumour suppressor factor. RESULTS: We have focused on glutaminase connections with key oncogenes and tumour suppressor genes. Targeting glutaminase isoenzymes includes different strategies aimed at deactivating the rewiring of cancer metabolism. In addition, we found a long list of metabolic enzymes, transcription factors and signalling pathways dealing with glutaminase. On the other hand, a number of chemicals have been described as isoenzyme-specific inhibitors of GLS and/or GLS2 isoforms. These molecules are being characterized as synergic and therapeutic agents in many types of tumours. CONCLUSION: This review states the metabolic pathways that are rewired in cancer, the roles of glutaminase isoforms in cancer, as well as the metabolic circuits regulated by glutaminases. We also show the plethora of anticancer drugs that specifically inhibit glutaminase isoenzymes for treating several sets of cancer.


Assuntos
Neoplasias , Carcinogênese , Glutaminase , Humanos , Isoenzimas , Neoplasias/tratamento farmacológico
10.
Semin Cell Dev Biol ; 98: 34-43, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31100352

RESUMO

Metabolic reprogramming in cancer targets glutamine metabolism as a key mechanism to provide energy, biosynthetic precursors and redox requirements to allow the massive proliferation of tumor cells. Glutamine is also a signaling molecule involved in essential pathways regulated by oncogenes and tumor suppressor factors. Glutaminase isoenzymes are critical proteins to control glutaminolysis, a key metabolic pathway for cell proliferation and survival that directs neoplasms' fate. Adaptive glutamine metabolism can be altered by different metabolic therapies, including the use of specific allosteric inhibitors of glutaminase that can evoke synergistic effects for the therapy of cancer patients. We also review other clinical applications of in vivo assessment of glutaminolysis by metabolomic approaches, including diagnosis and monitoring of cancer.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutamina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo
11.
Cancer Lett ; 467: 29-39, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31574293

RESUMO

Besides fast glucose catabolism, many types of cancers are characterized by elevated glutamine consumption. Medical oncology pursuits to block specific pathways, mainly glycolysis and glutaminolysis, in tumor cells to arrest cancer development. This strategy frequently induces adaptive metabolic resistance that must be countered. Combination therapy is an anticancer synergistic tool to overcome both cancer growth and resistance mechanisms. Dysregulation of glutaminase and glutamine synthetase are key events that allow anabolic adaptation of tumors. Several specific drugs that inhibit metabolic enzymes dealing with glutamine metabolism have been able to eliminate some neoplasms. Targeting the tumor microenvironment can be also another essential factor to be taken into account when single or combined cancer metabolic therapy fails.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Glutaminase/metabolismo , Neoplasias/enzimologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Glicólise , Humanos , Microambiente Tumoral
12.
Front Mol Neurosci ; 12: 138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191247

RESUMO

Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.

13.
Biochim Biophys Acta Rev Cancer ; 1870(2): 158-164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053497

RESUMO

Altered cellular metabolism is a hallmark of cancer. Cancer cells express isoforms of metabolic enzymes that may constitute therapeutic targets. Glutaminase controls glutamine metabolism and their expression correlate with malignancy of tumours. The two types of glutaminase isoenzymes, GLS and GLS2, differ in their expression patterns and functional roles: GLS has oncogenic properties and GLS2 has been described as a tumour suppressor factor. Selective genomic and epigenomic intervention over glutaminase affects the metabolic reprogramming of cancer. This review highlights the molecular metabolic vulnerabilities in various types of cancer, to be used for biomarker development, drug design, and in personalized oncology.


Assuntos
Glutaminase/metabolismo , Neoplasias/enzimologia , Animais , Biomarcadores Tumorais/metabolismo , Desenho de Fármacos , Humanos , Isoenzimas/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos
14.
Front Mol Neurosci ; 10: 278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928633

RESUMO

Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions acting through G protein-coupled receptors (GPCRs). Here we explore the crosstalk between LPA1 receptor and glutamatergic transmission by examining expression of glutaminase (GA) isoforms in different brain areas isolated from wild-type (WT) and KOLPA1 mice. Silencing of LPA1 receptor induced a severe down-regulation of Gls-encoded long glutaminase protein variant (KGA) (glutaminase gene encoding the kidney-type isoforms, GLS) protein expression in several brain regions, particularly in brain cortex and hippocampus. Immunohistochemical assessment of protein levels for the second type of glutaminase (GA) isoform, glutaminase gene encoding the liver-type isoforms (GLS2), did not detect substantial differences with regard to WT animals. The regional mRNA levels of GLS were determined by real time RT-PCR and did not show significant variations, except for prefrontal and motor cortex values which clearly diminished in KO mice. Total GA activity was also significantly reduced in prefrontal and motor cortex, but remained essentially unchanged in the hippocampus and rest of brain regions examined, suggesting activation of genetic compensatory mechanisms and/or post-translational modifications to compensate for KGA protein deficit. Remarkably, Golgi staining of hippocampal regions showed an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature filopodia-like phenotype, as compared with WT littermates. This structural change correlated with a strong decrease of active matrix-metalloproteinase (MMP) 9 in cerebral cortex and hippocampus of KOLPA1 mice. Taken together, these results demonstrate that LPA signaling through LPA1 influence expression of the main isoenzyme of glutamate biosynthesis with strong repercussions on dendritic spines maturation, which may partially explain the cognitive and learning defects previously reported for this colony of KOLPA1 mice.

15.
Neurochem Res ; 42(6): 1735-1746, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28281102

RESUMO

Cancer cells develop and succeed by shifting to different metabolic programs compared with their normal cell counterparts. One of the classical hallmarks of cancer cells is their higher glycolysis rate and lactate production even in the presence of abundant O2 (Warburg effect). Another common metabolic feature of cancer cells is a high rate of glutamine (Gln) consumption normally exceeding their biosynthetic and energetic needs. The term Gln addiction is now widely used to reflect the strong dependence shown by most cancer cells for this essential nitrogen substrate after metabolic reprogramming. A Gln/glutamate (Glu) cycle occurs between host tissues and the tumor in order to maximize its growth and proliferation rates. The mechanistic basis for this deregulated tumor metabolism and how these changes are connected to oncogenic and tumor suppressor pathways are becoming increasingly understood. Based on these advances, new avenues of research have been initiated to find novel therapeutic targets and to explore strategies that interfere with glutamine metabolism as anticancer therapies. In this review, we provided an updated overview of glutamine addiction in glioma, the most prevalent type of brain tumor.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/fisiologia , Glioma/metabolismo , Glutamina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glioma/tratamento farmacológico , Glioma/patologia , Glutamina/antagonistas & inibidores , Glicólise/fisiologia , Humanos
16.
Neurochem Res ; 42(3): 846-857, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012058

RESUMO

Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Drogas Ilícitas/toxicidade , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Homeostase , Humanos , Isoenzimas/metabolismo , Metabolismo dos Lipídeos
17.
Adv Neurobiol ; 13: 133-171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27885629

RESUMO

Mammalian glutaminases catalyze the stoichiometric conversion of L-glutamine to L-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.


Assuntos
Glutaminase/metabolismo , Animais , Ácido Glutâmico/biossíntese , Glutamina/metabolismo , Humanos , Proteômica , Pesquisa/tendências
18.
Neurochem Int ; 88: 1-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25837287

RESUMO

Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states. Moreover, the discovery of protein interacting partners and novel subcellular localizations, for example nucleocytoplasmic in neurons and astrocytes, strongly suggest non-neurotransmission roles for Gls2 isoforms associated with transcriptional regulation and cellular differentiation. Of note, Gls isoforms have been considered as an important trophic factor for neuronal differentiation and postnatal development of brain regions. On the other hand, glutaminases are taking center stage in tumor biology as new therapeutic targets to inhibit metabolic reprogramming of cancer cells. Interestingly, glutaminase isoenzymes play seemingly opposing roles in cancer cell growth and proliferation; this issue will be also succinctly discussed with special emphasis on brain tumors.


Assuntos
Encéfalo/enzimologia , Glutaminase/genética , Glutaminase/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neurônios/enzimologia , Neurônios/patologia
19.
Glia ; 63(3): 365-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25297978

RESUMO

The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes.


Assuntos
Astrócitos/enzimologia , Encéfalo/enzimologia , Glutaminase/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Ácido Glutâmico/metabolismo , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
20.
J Mol Med (Berl) ; 92(3): 277-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24276018

RESUMO

UNLABELLED: Mitochondrial glutaminase (GA) plays an essential role in cancer cell metabolism, contributing to biosynthesis, bioenergetics, and redox balance. Humans contain several GA isozymes encoded by the GLS and GLS2 genes, but the specific roles of each in cancer metabolism are still unclear. In this study, glioma SFxL and LN229 cells with silenced isoenzyme glutaminase KGA (encoded by GLS) showed lower survival ratios and a reduced GSH-dependent antioxidant capacity. These GLS-silenced cells also demonstrated induction of apoptosis indicated by enhanced annexin V binding capacity and caspase 3 activity. GLS silencing was associated with decreased mitochondrial membrane potential (ΔΨm) (JC-1 dye test), indicating that apoptosis was mediated by mitochondrial dysfunction. Similar observations were made in T98 glioma cells overexpressing glutaminase isoenzyme GAB, encoded by GLS2, though some characteristics (GSH/GSSG ratio) were different in the differently treated cell lines. Thus, control of GA isoenzyme expression may prove to be a key tool to alter both metabolic and oxidative stress in cancer therapy. Interestingly, reactive oxygen species (ROS) generation by treatment with oxidizing agents: arsenic trioxide or hydrogen peroxide, synergizes with either KGA silencing or GAB overexpression to suppress malignant properties of glioma cells, including the reduction of cellular motility. Of note, negative modulation of GLS isoforms or GAB overexpression evoked lower c-myc and bcl-2 expression, as well as higher pro-apoptotic bid expression. Combination of modulation of GA expression and treatment with oxidizing agents may become a therapeutic strategy for intractable cancers and provides a multi-angle evaluation system for anti-glioma pre-clinical investigations. KEY MESSAGE: Silencing GLS or overexpressing GLS2 induces growth inhibition in glioma cell lines. Inhibition is synergistically enhanced after arsenic trioxide (ATO) or H2O2 treatment. Glutatione levels decrease in GLS-silenced cells but augment if GLS2 is overexpressed. ROS synergistically inhibit cell migration by GLS silencing or GLS2 overexpression. c-myc, bid, and bcl-2 mediate apoptosis resulting from GLS silencing or GLS2 overexpression.


Assuntos
Neoplasias Encefálicas/enzimologia , Inativação Gênica , Glioma/enzimologia , Glioma/patologia , Glutaminase/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Arsenicais/farmacologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Inativação Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA