Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(44): 7376-7392, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709540

RESUMO

The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.


Assuntos
Sinais (Psicologia) , Motivação , Ratos , Masculino , Animais , Neurônios Dopaminérgicos , Ratos Sprague-Dawley , Dopamina , Ratos Long-Evans , Recompensa
2.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205506

RESUMO

The survival of an organism is dependent on their ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the nucleus accumbens is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCut revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient towards and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues. Significance Statement: Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCut revealed that cue-directed behaviors do not emerge without VTA dopamine. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of VTA dopamine during cue presentation to encode the incentive value of reward cues.

4.
Psychopharmacology (Berl) ; 239(4): 1035-1051, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34181035

RESUMO

RATIONALE: Relapse often occurs when individuals are exposed to stimuli or cues previously associated with the drug-taking experience. The ability of drug cues to trigger relapse is believed to be a consequence of incentive salience attribution, a process by which the incentive value of reward is transferred to the reward-paired cue. Sign-tracker (ST) rats that attribute enhanced incentive value to reward cues are more prone to relapse compared to goal-tracker (GT) rats that primarily attribute predictive value to such cues. OBJECTIVES: The neurobiological mechanisms underlying this individual variation in relapse propensity remains largely unexplored. The paraventricular nucleus of the thalamus (PVT) has been identified as a critical node in the regulation of cue-elicited behaviors in STs and GTs, including cue-induced reinstatement of drug-seeking behavior. Here we used a chemogenetic approach to assess whether "top-down" cortical input from the prelimbic cortex (PrL) to the PVT plays a role in mediating individual differences in relapse propensity. RESULTS: Chemogenetic inhibition of the PrL-PVT pathway selectively decreased cue-induced reinstatement of drug-seeking behavior in STs, without affecting behavior in GTs. In contrast, cocaine-primed drug-seeking behavior was not affected in either phenotype. Furthermore, when rats were characterized based on a different behavioral phenotype-locomotor response to novelty-inhibition of the PrL-PVT pathway had no effect on either cue- or drug-induced reinstatement. CONCLUSIONS: These results highlight an important role for the PrL-PVT pathway in vulnerability to relapse that is consequent to individual differences in the propensity to attribute incentive salience to discrete reward cues.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Animais , Masculino , Motivação , Ratos , Ratos Sprague-Dawley , Recidiva , Recompensa , Tálamo
5.
Behav Sci (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34940109

RESUMO

Dysfunctional coping styles are involved in the development, persistence, and relapse of psychiatric diseases. Passive coping with stress challenges (helplessness) is most commonly used in animal models of dysfunctional coping, although active coping strategies are associated with generalized anxiety disorder, social anxiety disorder, panic, and phobias as well as obsessive-compulsive and post-traumatic stress disorder. This paper analyzes the development of dysfunctional active coping strategies of mice of the helplessness-resistant DBA/2J (D2) inbred strain, submitted to temporary reduction in food availability in an uncontrollable and unavoidable condition. The results indicate that food-restricted D2 mice developed a stereotyped form of food anticipatory activity and dysfunctional reactive coping in novel aversive contexts and acquired inflexible and perseverant escape strategies in novel stressful situations. The evaluation of FosB/DeltaFosB immunostaining in different brain areas of food-restricted D2 mice revealed a pattern of expression typically associated with behavioral sensitization to addictive drugs and compulsivity. These results support the conclusion that an active coping style represents an endophenotype of mental disturbances characterized by perseverant and inflexible behavior.

6.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33731330

RESUMO

Environmental cues attain the ability to guide behavior via learned associations. As predictors, cues can elicit adaptive behavior and lead to valuable resources (e.g., food). For some individuals, however, cues are transformed into incentive stimuli and elicit motivational states that can be maladaptive. The goal-tracker (GT)/sign-tracker (ST) animal model captures individual differences in cue-motivated behaviors, with reward-associated cues serving as predictors of reward for both phenotypes but becoming incentive stimuli to a greater degree for STs. While these distinct phenotypes are characterized based on Pavlovian conditioned approach (PavCA) behavior, they exhibit differences on a number of behaviors relevant to psychopathology. To further characterize the neurobehavioral endophenotype associated with individual differences in cue-reward learning, neuroendocrine and behavioral profiles associated with stress and anxiety were investigated in male GT, ST, and intermediate responder (IR) rats. It was revealed that baseline corticosterone (CORT) increases with Pavlovian learning, but to the same degree, regardless of phenotype. No significant differences in behavior were observed between GTs and STs during an elevated plus maze (EPM) or open field test (OFT), nor were there differences in CORT response to the OFT or physiological restraint. Upon examination of central markers associated with stress reactivity, we found that STs have greater glucocorticoid receptor (GR) mRNA expression in the ventral hippocampus, with no phenotypic differences in the dorsal hippocampus or prelimbic cortex (PrL). These findings demonstrate that GTs and STs do not differ on stress-related and anxiety-related behaviors, and suggest that differences in neuroendocrine measures between these phenotypes can be attributed to distinct cue-reward learning styles.


Assuntos
Objetivos , Motivação , Animais , Sinais (Psicologia) , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa
7.
Psychopharmacology (Berl) ; 237(12): 3741-3758, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32852601

RESUMO

RATIONALE: Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES: To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS: Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS: LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS: The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.


Assuntos
Sinais (Psicologia) , Região Hipotalâmica Lateral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Motivação/fisiologia , Receptores de Orexina/fisiologia , Recompensa , Animais , Benzoxazóis/administração & dosagem , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Isoquinolinas/administração & dosagem , Masculino , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Motivação/efeitos dos fármacos , Naftiridinas/administração & dosagem , Antagonistas dos Receptores de Orexina/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ureia/administração & dosagem , Ureia/análogos & derivados
8.
Brain Sci ; 10(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102272

RESUMO

In this brief review, we present evidence of the primary role of learning-associated plasticity in the development of either adaptive or maladaptive coping strategies. Successful interactions with novel stressors foster plasticity within the neural circuits supporting acquisition, consolidation, retrieval, and extinction of instrumental learning leading to development of a rich repertoire of flexible and context-specific adaptive coping responses, whereas prolonged or repeated exposure to inescapable/uncontrollable stressors fosters dysfunctional plasticity within the learning circuits leading to perseverant and inflexible maladaptive coping strategies. Finally, the results collected using an animal model of genotype-specific coping styles indicate the engagement of different molecular networks and the opposite direction of stress effects (reduced vs. enhanced gene expression) in stressed animals, as well as different behavioral alterations, in line with differences in the symptoms profile associated with post-traumatic stress disorder.

9.
Elife ; 82019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502538

RESUMO

Cues in the environment can elicit complex emotional states, and thereby maladaptive behavior, as a function of their ascribed value. Here we capture individual variation in the propensity to attribute motivational value to reward-cues using the sign-tracker/goal-tracker animal model. Goal-trackers attribute predictive value to reward-cues, and sign-trackers attribute both predictive and incentive value. Using chemogenetics and microdialysis, we show that, in sign-trackers, stimulation of the neuronal pathway from the prelimbic cortex (PrL) to the paraventricular nucleus of the thalamus (PVT) decreases the incentive value of a reward-cue. In contrast, in goal-trackers, inhibition of the PrL-PVT pathway increases both the incentive value and dopamine levels in the nucleus accumbens shell. The PrL-PVT pathway, therefore, exerts top-down control over the dopamine-dependent process of incentive salience attribution. These results highlight PrL-PVT pathway as a potential target for treating psychopathologies associated with the attribution of excessive incentive value to reward-cues, including addiction.


Assuntos
Comportamento Animal , Sinais (Psicologia) , Sistema Límbico/fisiologia , Vias Neurais/fisiologia , Animais , Motivação , Ratos , Recompensa
10.
Psychopharmacology (Berl) ; 235(4): 999-1014, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29285634

RESUMO

RATIONALE: The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. OBJECTIVES: This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. METHODS: Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. RESULTS: Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. CONCLUSION: In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.


Assuntos
Cocaína/administração & dosagem , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Objetivos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/fisiologia , Motivação/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
11.
Front Pharmacol ; 8: 621, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955227

RESUMO

The inability to learn an adaptive coping strategy in a novel stressful condition leads to dysfunctional stress coping, a marker of mental disturbances. This study tested the involvement of dorsal striatal dopamine receptors in the dysfunctional coping with the Forced Swim test fostered by a previous experience of reduced food availability. Adult male mice were submitted to a temporary (12 days) reduction of food availability [food-restricted (FR)] or continuously free-fed (FF). Different groups of FF and FR mice were used to evaluate: (1) dorsal striatal mRNA levels of the two isoforms of the dopamine D2 receptor (D2S, D2L). (2) Forced Swim-induced c-fos expression in the dorsal striatum; (3) acquisition and 24 h retention of passive coping with Forced Swim. Additional groups of FF mice were tested for 24 h retention of passive coping acquired during a first experience with Forced Swim immediately followed by intra-striatal infusion of vehicle or two doses of the dopamine D2/D3 receptors antagonist sulpiride or the D1/D5 receptors antagonist SCH23390. Previous restricted feeding selectively reduced mRNA levels of both D2 isoforms and abolished Forced Swim-induced c-fos expression in the left Dorsolateral Striatum and selectively prevented 24 h retention of the coping strategy acquired in a first experience of Forced Swim. Finally, temporary blockade of left Dorsolateral Striatum D2/D3 receptors immediately following the first Forced Swim experience selectively reproduced the behavioral effect of restricted feeding in FF mice. In conclusion, the present results demonstrate that mice previously exposed to a temporary reduction of food availability show low striatal D2 receptors, a known marker of addiction-associated aberrant neuroplasticity, as well as liability to relapse into maladaptive stress coping strategies. Moreover, they offer strong support to a causal relationship between reduction of D2 receptors in the left Dorsolateral Striatum and impaired consolidation of newly acquired adaptive coping.

12.
Psychopharmacology (Berl) ; 231(21): 4099-108, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958228

RESUMO

RATIONALE: Endogenous opioids could play a major role in the mesocorticolimbic dopamine (DA) responses to stress challenge. However, there is still no direct evidence of an influence of endogenous opioids on any of these responses. OBJECTIVE: We assessed whether and how endogenous opioids modulate fluctuations of mesocortical and mesoaccumbens DA tone in rats during a first experience with restraint stress. METHOD: We first evaluated the effects of systemic naltrexone (NTRX) on DA outflow in the medial prefrontal cortex (mpFC) and in the nucleus accumbens (NAc) through dual-probe microdialysis. Second, we assessed the effect of perfusion, through reverse microdialysis, of direct DA receptor agonists in mpFC on NAc DA outflow in NTRX-pretreated stressed rats. Finally, we tested the effects of ventral tegmental area (VTA) perfusion of NTRX, the selective mu1 antagonist naloxonazine and the selective delta antagonist naltrindole on mpFC and NAc DA outflow in stressed rats, with multiple probe experiments. RESULTS: Systemic NTRX, at behaviorally effective doses, selectively prevented the increase of mpFC DA levels and the reduction of NAc DA levels observable during prolonged restraint. Local co-perfusion of D1 and D2 agonists in mpFC recovered inhibition of NAc DA in NTRX-pretreated restrained rats. Finally, intra-VTA perfusion of either NTRX or the mu1 antagonist, but not the delta antagonist, mimicked the effects of systemic NTRX. CONCLUSION: During prolonged experience with a novel unavoidable/uncontrollable stressor, endogenous opioids, through stimulation of mu1 receptors in the VTA, elevate mesocortical DA tone thus reducing DA tone in the NAc DA.


Assuntos
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores Opioides mu/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Transmissão Sináptica/fisiologia , Área Tegmentar Ventral/metabolismo , Animais , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Masculino , Microdiálise , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
13.
Rev Neurosci ; 23(5-6): 659-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23159866

RESUMO

Stress is the main non-genetic source of psychopathology. Therefore, the identification of neurobiological bases of resilience, the resistance to pathological outcomes of stress, is a most relevant topic of research. It is an accepted view that resilient individuals are those who do not develop helplessness, or other depression-like phenotypes, following a history of stress. In the present review, we discuss the phenotypic differences between mice of the inbred C57BL/6J and DBA/2J strains that could be associated with the strain-specific resistance to helplessness observable in DBA/2J mice. The reviewed results support the hypothesis that resilience to stress-promoted helplessness develops through interactions between a specific genetic makeup and a history of stress, and is associated with an active coping style, a bias toward the use of stimulus-response learning, and specific adaptive changes of mesoaccumbens dopamine transmission under stress. Finally, evidence that compulsivity represents a side effect of the neuroadaptive processes fostering resistance to develop depressive-like phenotypes under stress is discussed.


Assuntos
Adaptação Psicológica , Aprendizagem/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Condicionamento Operante , Modelos Animais de Doenças , Dopamina/metabolismo , Endofenótipos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/metabolismo , Especificidade da Espécie , Estresse Psicológico/patologia , Natação
14.
J Environ Manage ; 109: 12-8, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22659645

RESUMO

In this study we evaluated the influence of ground purple sea urchin (Paracentrotus lividus) endoskeletons, a processing waste common to all edible sea urchin plants, on the chemical, biochemical and microbiological features of an acidic (pH 5.65) sandy-loam soil. The purple sea urchin endoskeletons were characterized by a high content of total carbonates (∼94%), a moderately alkaline pH in water (pH 7.88) and electrical conductivity values (3.55 mS/cm) very similar to those of commercial lime. To evaluate the influence of the P. lividus endoskeletons on soil properties four different amendment rates were tested, notably 0.5, 1.0, 3.0 and 5.0% based on soil dry weight, and the effects compared with those recorded on unamended control soil. The addition of the purple sea urchin processing waste caused an immediate and significant pH increase which was positively related to the rate of the amendment addition. After a six months equilibration period, the differences in soil pH were still evident and significant increases of electrical conductivity and available phosphorus were also detected in soils with the higher amendment rates. The number of heterotrophic and cellulolytic bacteria and actinomycetes significantly increased after amendment addition while the number of culturable fungi steadily declined. The analysis of the Biolog Community Level Physiological Profile indicated a clear influence of the purple sea urchin processing waste on the structure of the native microbial community while a significant increase of microbial functionality (i.e. dehydrogenase activity) was recorded in soil treated with the higher amendment rates (i.e. 3.0 and 5.0%). The improvement of microbial abundance and functionality as well as the change of the microbial community structure were ascribed to the pH shift induced by the P. lividus processing waste. To investigate possible effects on soil fertility, dwarf bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth were also assessed in a pot experiment. Plant growth was unaffected (wheat) or stimulated (bean) by the amendment addition in the 0.5-3.0% range while the higher amendment rate (i.e. 5.0%) was detrimental for both plant species indicating a phytotoxic effect which could be due to different factors such as an excess of calcium in soil, a suppression of Mg uptake or the higher EC values detected at the highest amendment rate. It is concluded that ground P. lividus endoskeletons have potential as a soil amendment to ameliorate chemical and biological properties of acidic Mediterranean soils. This seems particularly relevant, especially at the lower amendment rates, since for the first time, a sustainable management system is proposed for P. lividus processing waste, which foresees economic value in the sea urchin by-product through its re-use within the agricultural production system.


Assuntos
Agricultura/métodos , Phaseolus/crescimento & desenvolvimento , Ouriços-do-Mar , Solo/análise , Triticum/crescimento & desenvolvimento , Animais , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...