Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(3): 1607-1619, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38416687

RESUMO

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.


Assuntos
Bioimpressão , Humanos , Engenharia Tecidual/métodos , Osso e Ossos , Peptídeos e Proteínas de Sinalização Intercelular , Células Estromais/transplante
2.
Indian J Hematol Blood Transfus ; 40(1): 108-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312178

RESUMO

Prophylaxis is the gold standard for the management of hemophilia A patients. It has been shown that prophylaxis regulated with pharmacokinetic (PK) data reduces frequency of bleeding and cost of treatment. To determine the best prophylaxis regimen, PK dosing tools using the Bayesian method have been developed. We aimed to compare two PK dosing tools. Blood samples were drawn before, 4, 24, and 48 h after FVIII infusions from patients with severe hemophilia A and inhibitor negative. FVIII levels were measured by PTT-based one-stage assay method. PK parameters obtained using WAPPS and myPKFiT, which are web-accessible PK dosing tools using Bayesian algorithm, and daily prophylaxis dose estimated by the programs were compared. Forty-two hemophilia A patients [median age 13 years (IQR 8.9-16.4)] included in the study. There was no difference between the daily dose of FVIII given for prophylaxis and the dose recommended by the myPKFiT for the 1% trough level; whereas, a significant difference was found with the WAPPS. The half-lives of FVIII did not differ between the two dosing tools; however, significant differences were found in the estimated dose, clearances, and times to 1% trough level. There was no significant difference between PK data of patients who received Advate® and those who received non-Advate® factor concentrates. Choice of PK dosing tool can affect recommended FVIII dose. However, target trough levels should be individualized according to bleeding phenotype and daily activity of patient. Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-023-01671-0.

3.
Bioimpacts ; 13(4): 289-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645025

RESUMO

Introduction: Pluripotent stem cells have been used by various researchers to differentiate and characterize endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) for the clinical treatment of vascular injuries. Studies continue to differentiate and characterize the cells with higher vascularization potential and low risk of malignant transformation to the recipient. Unlike previous studies, this research aimed to differentiate induced pluripotent stem (iPS) cells into endothelial progenitor cells (EPCs) and VSMCs using a step-wise technique. This was achieved by elucidating the spatio-temporal expressions of the stage-specific genes and proteins during the differentiation process. The presence of highly expressed oncogenes in iPS cells was also investigated during the differentiation period. Methods: Induced PS cells were differentiated into lateral mesoderm cells (Flk1+). The Flk1+ populations were isolated on day 5.5 of the mesodermal differentiation period. Flk1+ cells were further differentiated into EPCs and VSMCs using VEGF165 and platelet-derived growth factor-BB (PDGF-BB), respectively, and then characterized using gene expression levels, immunocytochemistry (ICC), and western blot (WB) methods. During the differentiation steps, the expression levels of the marker genes and proto-oncogenic Myc and Klf4 genes were simultaneously studied. Results: The optimal time for the isolation of Flk1+ cells was on day 5.5. EPCs and VSMCs were differentiated from Flk1+ cells and characterized with EPC-specific markers, including Kdr, Pecam1, CD133, Cdh5, Efnb2, Vcam1; and VSMC-specific markers, including Acta2, Cnn1, Des, and Myh11. Differentiated cells were validated based on their temporal gene expressions, protein synthesis, and localization at certain time points. Significant decreases in Myc and Klf4 gene expression levels were observed during the EPCs and VSMC differentiation period. Conclusion: EPCs and VSMCs were successfully differentiated from iPS cells and characterized by gene expression levels, ICC, and WB. We observed significant decreases in oncogene expression levels in the differentiated EPCs and VSMCs. In terms of safety, the described methodology provided a better safety margin. EPCs and VSMC obtained using this method may be good candidates for transplantation and vascular regeneration.

4.
J Assist Reprod Genet ; 40(4): 929-941, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36823316

RESUMO

Expression of the embryonic poly(A)-binding protein (EPAB) in frog, mouse, and human oocytes and early-stage embryos is maintained at high levels until embryonic genome activation (EGA) after which a significant decrease occurs in EPAB levels. Studies on the vertebrate oocytes and early embryos revealed that EPAB plays key roles in the translational regulation, stabilization, and protection of maternal mRNAs during oocyte maturation and early embryogenesis. However, it remains elusive whether EPAB interacts with other cellular proteins and undergoes phosphorylation to perform these roles. For this purpose, we identified a group of Epab-interacting proteins and its phosphorylation status in mouse germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, and in 1-cell, 2-cell, and 4-cell preimplantation embryos. In the oocytes and early preimplantation embryos, Epab-interacting proteins were found to play roles in the translation and transcription processes, intracellular signaling and transport, maintenance of structural integrity, metabolism, posttranslational modifications, and chromatin remodeling. Moreover, we discovered that Epab undergoes phosphorylation on the serine, threonine, and tyrosine residues, which are localized in the RNA recognition motifs 2, 3, and 4 or C-terminal. Conclusively, these findings suggest that Epab not only functions in the translational control of maternal mRNAs through binding to their poly(A) tails but also participates in various cellular events through interacting with certain group proteins. Most likely, Epab undergoes a dynamic phosphorylation during the oocyte maturation and the early embryo development to carry out these functions.


Assuntos
Serina , Tirosina , Humanos , Animais , Camundongos , Fosforilação , Tirosina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Oócitos , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo
5.
Andrologia ; 54(1): e14269, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34651330

RESUMO

In mammals, 'oocyte activation' is triggered by certain proteins, one of which is phospholipase C-zeta. Recent evidence suggests that low expression of phospholipase C-zeta might be associated with male infertility, while a limited number of studies claimed the opposite. This study was designed to test whether quantity of phospholipase C-zeta and in vitro fertilisation rates are correlated or not, assessed by flow cytometry. Semen samples from 43 infertile couples were analysed for the percentage and mean fluorescent intensity (MFI) of phospholipase C-zeta protein. Results were confirmed by immunofluorescent labelling. Patients with a fertilisation rate of 40% or lower were involved in the low fertilisation group, while the high fertilization group consisted of patients with a fertilisation rate of 60% and higher. Quantitative analyses by flow cytometry showed no significant difference among the low fertilisation and high fertilisation groups when phospholipase C-zeta ratio or MFI was considered. No correlation was found between pregnancy rates and phospholipase C-zeta quantity. None of the total fertilisation failure cases were lack of phospholipase C-zeta. In fact, fertilisation was possible even when phospholipase C-zeta levels were very low. Thus, we concluded that phospholipase C-zeta quantity cannot be considered as a diagnostic tool for male infertility.


Assuntos
Infertilidade Masculina , Taxa de Gravidez , Fosfolipases Tipo C , Feminino , Fertilização , Humanos , Infertilidade Masculina/diagnóstico , Masculino , Gravidez , Espermatozoides
6.
Front Physiol ; 12: 773688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803746

RESUMO

Lipids and carbohydrates are the two primary energy sources for both animals and insects. Energy homeostasis is under strict control by the neuroendocrine system, and disruption of energy homeostasis leads to the development of various disorders, such as obesity, diabetes, fatty liver syndrome, and cardiac dysfunction. One critical factor in this respect is feeding habits and diet composition. Insects are good models to study the physiological and biochemical background of the effect of diet on energy homeostasis and related disorders; however, most studies are based on a single model species, Drosophila melanogaster. In the current study, we examined the effects of four different diets, high fat (HFD), high sugar (HSD), calcium-rich (CRD), and a plant-based (PBD) on energy homeostasis in younger (third instar) and older (fifth instar) larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) in comparison to a regular artificial bean diet. Both HSD and HFD led to weight gain, while CRD had the opposite effect and PBD had no effect in fifth instar larvae and pupae. The pattern was the same for HSD and CRD in third instar larvae while a reduction in weight was detected with HFD and PBD. Larval development was shortest with the HSD, while HFD, CRD, and PBD led to retardation compared to the control. Triglyceride (TG) levels were higher with HFD, HSD, and PBD, with larger lipid droplet sizes, while CRD led to a reduction of TG levels and lipid droplet size. Trehalose levels were highest with HSD, while CRD led to a reduction at third instar larvae, and HFD and PBD had no effect. Fifth instar larvae had similar levels of trehalose with all diets. There was no difference in the expression of the genes encoding neuropeptides SpoliAKH and SpoliILP1-2 with different diets in third instar larvae, while all three genes were expressed primarily with HSD, and SpolisNPF was primarily expressed with HFD in fifth instar larvae. In summary, different diet treatments alter the development of insects, and energy and metabolic pathways through the regulation of peptide hormones.

7.
J Assist Reprod Genet ; 38(12): 3135-3144, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533678

RESUMO

PURPOSE: DNA methylation is one of the epigenetic mechanisms that plays critical roles in preimplantation embryo development executed by DNA methyltransferase (Dnmt) enzymes. Dnmt1, responsible for the maintenance of methylation, and Dnmt3a, for de novo methylation, are gradually erased from the zygote in succeeding stages and then reestablished in the blastocyst. This study was designed to address the vital role of Dnmt1 and Dnmt3a enzymes by silencing their gene expressions in embryonic development in mice. METHODS: Groups were (i) control, (ii) Dnmt1-siRNA, (iii) Dnmt3a-siRNA, and (iv) non-targeted (NT) siRNA. Knockdown of Dnmt genes using siRNAs was confirmed by measuring the targeted proteins using Western blot and immunofluorescence. Following knockdown of Dnmt1 and Dnmt3a in zygotes, the developmental competence and global DNA methylation levels were analyzed after 96 h in embryo cultures. RESULTS: A significant number of embryos arrested at the 2-cell stage or had undergone degeneration in the Dnmt1 and Dnmt3a knocked-down groups. By 3D observations in super-resolution microscopy, we noted that Dnmt1 was exclusively found in juxtanuclear cytoplasm, while the Dnmt3a signal was preferentially localized in the nucleus, both in trophoblasts (TBs) and embryoblasts (EBs). Interestingly, the global DNA methylation level decreased in the Dnmt1 knockdown group, while it increased in the Dnmt3a knockdown group. CONCLUSION: Precisely aligned expression of Dnmt genes is highly essential for the fate of an embryo in the early developmental period. Our data indicates that further analysis is mandatory to designate the specific targets of these methylation/demethylation processes in mouse and human preimplantation embryos.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , Embrião de Mamíferos/fisiologia , Expressão Gênica/genética , Animais , Blastocisto/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oócitos/fisiologia , Gravidez , Trofoblastos/fisiologia , Zigoto/fisiologia
8.
Int J Stem Cells ; 13(3): 364-376, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32840230

RESUMO

BACKGROUND AND OBJECTIVES: The HUC-HEART Trial (ClinicalTrials.gov Identifier: NCT02323477) was a controlled, prospective, phase I/II, multicenter, single-blind, three-arm randomized study of intramyocardial delivery of human umbilical cord-derived mesenchymal stromal cells (HUC-MSCs) combined with coronary artery bypass-grafting (CABG) in patients with chronic ischemic cardiomyopathy (CIC). The trial aimed to assess (i) the safety and the efficacy of cell transplantation during one-year follow-up, (ii) to compare the efficacy of HUC-MSCs with autologous bone-marrow- derived mononuclear cells (BM-MNCs) in the same clinical settings. METHODS AND RESULTS: Fifty-four patients who were randomized to receive HUC-MSCs (23×106) (n=26) or BM-MNCs (70×107) (n=12) in combination with CABG surgery. The control patients (n=16) received no cells/vehicles but CABG intervention. All patients were screened at baseline and 1, 3, 6, 12 months after transplantation. Forty-six (85%) patients completed 12 months follow-up. No short/mid-term adverse events were encountered. Decline in NT-proBNP (baseline∼ 6 months) in both cell-treated groups; an increase in left ventricular ejection fraction (LVEF) (5.4%) and stroke volume (19.7%) were noted (baseline∼6 or 12 months) only in the HUC-MSC group. Decreases were also detected in necrotic myocardium as 2.3% in the control, 4.5% in BM-MNC, and 7.7% in the HUC-MSC groups. The 6-min walking test revealed an increase in the control (14.4%) and HUC-MSC (23.1%) groups. CONCLUSIONS: Significant findings directly related to the intramyocardial delivery of HUC-MSCs justified their efficacy in CIC. Stricter patient selection criteria with precisely aligned cell dose and delivery intervals, rigorous follow-up by detailed diagnostic approaches would further help to clarify the responsiveness to the therapy.

9.
Stem Cells Transl Med ; 9(11): 1287-1302, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779878

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID-19) pandemic has become a global health crisis with an extremely rapid progress resulting in thousands of patients who may develop acute respiratory distress syndrome (ARDS) requiring intensive care unit (ICU) treatment. So far, no specific antiviral therapeutic agent has been demonstrated to be effective for COVID-19; therefore, the clinical management is largely supportive and depends on the patients' immune response leading to a cytokine storm followed by lung edema, dysfunction of air exchange, and ARDS, which could lead to multiorgan failure and death. Given that human mesenchymal stem cells (MSCs) from various tissue sources have revealed successful clinical outcomes in many immunocompromised disorders by inhibiting the overactivation of the immune system and promoting endogenous repair by improving the microenvironment, there is a growing demand for MSC infusions in patients with COVID-19-related ARDS in the ICU. In this review, we have documented the rationale and possible outcomes of compassionate use of MSCs, particularly in patients with SARS-CoV-2 infections, toward proving or disproving the efficacy of this approach in the near future. Many centers have registered and approved, and some already started, single-case or phase I/II trials primarily aiming to rescue their critical patients when no other therapeutic approach responds. On the other hand, it is also very important to mention that there is a good deal of concern about clinics offering unproven stem cell treatments for COVID-19. The reviewers and oversight bodies will be looking for a balanced but critical appraisal of current trials.


Assuntos
COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , COVID-19/virologia , Humanos , Células-Tronco Mesenquimais/citologia , Pandemias , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade
10.
Acta Histochem ; 122(6): 151578, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32778240

RESUMO

OBJECTIVE: Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) gained importance in acute/chronic ischemic cardiomyopathy because of their outstanding regenerative potential in various pathologic conditions. The present study was designed to determine to what extent hUC-MSCs contribute to myocardial regeneration in acute experimental myocardial infarction (MI) in rats. METHODS: Animals were assigned into two groups; the control group received intramyocardial PBS injections, while the hUC-MSC group received calcein-AM-labeled 8.8 × 106/kg hUC-MSCs. Three weeks following the acute MI induction, rats were sacrificed after assessing the left ventricular (LV) function using echocardiography. For the assessment of infarct size, the triphenyl tetrazolium chloride (TTC) test was used in isolated hearts. Collagen-rich scar tissue was demonstrated using Masson's trichrome staining, followed by the detection of cardiac troponin I (cTnI), α-sarcomeric actin (α-SA), von Willebrand factor (vWF), CD68 and CD206 expressions in control and cell-injected sections. RESULTS: Echocardiography revealed a significant difference (P = 0.037) in the LV ejection fraction between groups. TTC assays demonstrated a significant difference (P = 0.006) between the groups regarding the ratio of the infarcted LV area. Calcein-AM-loaded cells were identified mostly in ischemic myocardium. Transplanted cells also expressed human-specific cTnI, providing concrete proof of transdifferentiation into cardiomyocytes, and α-SA. vWF+ cells verified the neovascularization in the ischemic myocardium. Finally, a slight shift from pro-inflammatory to anti-inflammatory macrophages (CD68+/CD206+) was noted in both groups. CONCLUSIONS: We found that the intramyocardial transplanted hUC-MSCs engrafted and partially transdifferentiated into cardiomyocytes, reduced scar formation, and induced angiogenesis through the association of pro/anti-inflammatory macrophages.


Assuntos
Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Cordão Umbilical/citologia , Animais , Células Cultivadas , Ecocardiografia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/fisiologia , Gravidez , Ratos , Ratos Wistar
11.
J Assist Reprod Genet ; 37(2): 369-384, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31930433

RESUMO

PURPOSE: Chemical fixation is a critical step to retaining cellular targets as naturally as possible. Recent developments in microscopy allow sophisticated detection and measuring techniques with which spatio-temporal molecular alterations are conceivable. In this study, we compare two members of aldehyde fixatives [i.e., glyoxal (Gly) and paraformaldehyde (PFA)] to determine whether Gly, a less toxic dialdehyde fixative that is considered to retain immunoreactivity could provide a successful and consistent cell fixation in favor of PFA in various cell preparations and types. METHODS: We document the fixation competence of Gly and PFA side-by-side (with or without Triton X-100 permeabilization) in live- and fixed-cell preparations in mouse oocytes, embryos, and human somatic cells (human umbilical cord-derived mesenchymal stromal cells) using protein quantification by Western blot assay and super-resolution microscopy. RESULTS: Although Gly seemed to act faster than PFA, catastrophic consequences were found not acceptable, especially in oocytes and embryos. Due to cell lysate and immunocytochemistry surveys, it was obvious that PFA is superior to Gly in retaining cellular proteins in situ with little/no background staining. In many samples, PFA revealed more reliable and consistent results regarding the protein quantity and cellular localization corresponding to previously defined patterns in the literature. CONCLUSION: Although the use of Gly is beneficial as indicated by previous reports, we concluded that it does not meet the requirement for proper fixation, at least for the tested cell types and proteins. However, PFA alone with no addition of TX displayed a significant cytoplasmic loss by generating membrane blebs during fixation.


Assuntos
Fixadores/farmacologia , Formaldeído/farmacologia , Imuno-Histoquímica , Oócitos/efeitos dos fármacos , Polímeros/farmacologia , Animais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/imunologia , Epitopos/efeitos dos fármacos , Epitopos/imunologia , Feminino , Glioxal/farmacologia , Humanos , Camundongos , Oócitos/crescimento & desenvolvimento , Oócitos/imunologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia
12.
Acta Neuropathol Commun ; 7(1): 134, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429795

RESUMO

Increasing evidence indicates that pericytes are vulnerable cells, playing pathophysiological roles in various neurodegenerative processes. Microvascular pericytes contract during cerebral and coronary ischemia and do not relax after re-opening of the occluded artery, causing incomplete reperfusion. However, the cellular mechanisms underlying ischemia-induced pericyte contraction, its delayed emergence, and whether it is pharmacologically reversible are unclear. Here, we investigate i) whether ischemia-induced pericyte contractions are mediated by alpha-smooth muscle actin (α-SMA), ii) the sources of calcium rise in ischemic pericytes, and iii) if peri-microvascular glycogen can support pericyte metabolism during ischemia. Thus, we examined pericyte contractility in response to retinal ischemia both in vivo, using adaptive optics scanning light ophthalmoscopy and, ex vivo, using an unbiased stereological approach. We found that microvascular constrictions were associated with increased calcium in pericytes as detected by a genetically encoded calcium indicator (NG2-GCaMP6) or a fluoroprobe (Fluo-4). Knocking down α-SMA expression with RNA interference or fixing F-actin with phalloidin or calcium antagonist amlodipine prevented constrictions, suggesting that constrictions resulted from calcium- and α-SMA-mediated pericyte contractions. Carbenoxolone or a Cx43-selective peptide blocker also reduced calcium rise, consistent with involvement of gap junction-mediated mechanisms in addition to voltage-gated calcium channels. Pericyte calcium increase and capillary constrictions became significant after 1 h of ischemia and were coincident with depletion of peri-microvascular glycogen, suggesting that glucose derived from glycogen granules could support pericyte metabolism and delay ischemia-induced microvascular dysfunction. Indeed, capillary constrictions emerged earlier when glycogen breakdown was pharmacologically inhibited. Constrictions persisted despite recanalization but were reversible with pericyte-relaxant adenosine administered during recanalization. Our study demonstrates that retinal ischemia, a common cause of blindness, induces α-SMA- and calcium-mediated persistent pericyte contraction, which can be delayed by glucose driven from peri-microvascular glycogen. These findings clarify the contractile nature of capillary pericytes and identify a novel metabolic collaboration between peri-microvascular end-feet and pericytes.


Assuntos
Actinas/metabolismo , Capilares/metabolismo , Glicogênio/deficiência , Isquemia/diagnóstico por imagem , Pericitos/metabolismo , Vasos Retinianos/metabolismo , Vasoconstrição/fisiologia , Actinas/antagonistas & inibidores , Actinas/genética , Animais , Capilares/diagnóstico por imagem , Isquemia/metabolismo , Camundongos , Camundongos Transgênicos , Oftalmoscopia/métodos , Pericitos/patologia , Retina/diagnóstico por imagem , Retina/metabolismo , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/metabolismo , Vasos Retinianos/diagnóstico por imagem
13.
Cytotherapy ; 21(1): 64-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455106

RESUMO

BACKGROUND: The HUC-HEART Trial is a clinical study of intramyocardial delivery of current Good Manufacturing Practice (cGMP)-grade human umbilical cord multipotent stromal cells (HUC-MSCs) in ischemic cardiomyopathy where 2 × 107 cells are administered to peri-infarcted myocardium. Prior to the onset of the trial, we aimed to optimize the transport/storage conditions for obtaining the highest cell viability and proliferation rate of cells to be transplanted. METHODS: Cells were tested after being transported in phosphate-buffered saline (PBS) or Ringer's lactate-based (RL) transport media supplemented with human serum albumin (HSA) and/or hydroxyethyl starch (HES) at two temperatures (2-10°C or 22-24°C). RESULTS: The effects of transport conditions on cell viability following 6 h were found highest (93.4 ± 1.5) in RL-based media at 2-10°C. Karyotypes were found normal upon transportation in any of the formulations and temperatures. However, the highest proliferation rate was noted (3.1-fold increase) in RL (1% HSA) media at 2-10°C over 6 days in culture. From that point, RL (1% HSA) media at 2-10°C was used for further experiments. The maximum cell storage time was detected around 24 h at 2-10°C. Extended storage periods resulted in a decrease in cell viability but not in MSC marker expression. An increase in actin quantity was detected in hypoxia (5% O2) groups in early culture days; no difference was noted between hypoxic versus normoxic (21% O2) conditions in later days. DISCUSSION: The overall results suggest that non-commercial, simple media formulations with extended storage intervals at 2-10°C temperatures are capable of retaining the characteristics of clinical-grade HUC-MSCs. The above findings led us to use RL (1% HSA) media at 2-10°C for transport and storage in the HUC-HEART Trial; 23 patients received HUC-MSCs by August 2018; no adverse effects were noted related to cell processing and transplantation.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Isquemia Miocárdica/terapia , Manejo de Espécimes/métodos , Cordão Umbilical/citologia , Actinas/análise , Hipóxia Celular/fisiologia , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Recém-Nascido , Cariótipo , Temperatura
14.
Sci Rep ; 8(1): 14770, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282977

RESUMO

The initial phase of neuronal death is not well characterized. Here, we show that expansion of the nuclear membrane without losing its integrity along with peripheralization of chromatin are immediate signs of neuronal injury. Importantly, these changes can be identified with commonly used nuclear stains and used as markers of poor perfusion-fixation. Although frozen sections are widely used, no markers are available to ensure that the observed changes were not confounded by perfusion-induced hypoxia/ischemia. Moreover, HMGB1 was immediately released and p53 translocated to mitochondria in hypoxic/ischemic neurons, whereas nuclear pore complex inhibitors prevented the nuclear changes, identifying novel neuroprotection targets.


Assuntos
Encéfalo/ultraestrutura , Hipóxia-Isquemia Encefálica/genética , Neurônios/ultraestrutura , Membrana Nuclear/ultraestrutura , Animais , Animais Recém-Nascidos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Morte Celular/genética , Núcleo Celular/genética , Núcleo Celular/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Cromatina/genética , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/ultraestrutura , Modelos Animais de Doenças , Glucose/genética , Proteína HMGB1/genética , Humanos , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Microscopia Eletrônica de Varredura , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neurônios/patologia , Membrana Nuclear/patologia , Fixação de Tecidos/normas
15.
Elife ; 72018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561727

RESUMO

Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling.


Assuntos
Actinas/metabolismo , Capilares/metabolismo , Pericitos/metabolismo , Vasos Retinianos/metabolismo , Actinas/genética , Animais , Capilares/citologia , Imuno-Histoquímica , Camundongos Transgênicos , Músculo Liso/metabolismo , Polimerização , Interferência de RNA
16.
J Assist Reprod Genet ; 35(4): 615-626, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29497951

RESUMO

PURPOSE: Even with 86 live births reported globally so far, the mechanism of primordial follicle loss following autotransplantation of the frozen-thawed ovarian tissue needs further evaluation. Pten, Tsc1, p27, and Amh are the inhibitor proteins that play crucial roles in suppressing the transition from the primordial follicle to primary state, maintaining the primordial follicle reserve. In this study, we aimed to evaluate whether the expression patterns of these proteins change and it may be related to the global primordial follicle loss after autotransplantation of the frozen-thawed ovarian tissue. METHODS: Four groups were established in rats: fresh-control, frozen/thawed, fresh-transplanted, and frozen/thawed and transplanted. After slow freezing and thawing process, two ovarian pieces were transplanted into the back muscle of the same rat. After 2 weeks, grafts were harvested, fixed, and embedded into the paraffin block. Normal and atretic primordial/growing follicle count was performed in all groups. Ovarian tissues were evaluated for the dynamic expressions of the Pten, Tsc1, p27, and Amh proteins using immunohistochemistry, and H-score analyses were done. RESULTS: Ovarian tissue cryopreservation does not change the expression patterns of inhibitory proteins that control ovarian reserve. Both in fresh and frozen/thawed autotransplanted groups, the expression of inhibitory proteins and Amh decreased significantly in primordial follicles and in growing follicles, respectively. In control group and in frozen/thawed group, primordial follicle counts were similar but decreased by almost half in both fresh-transplanted and frozen/thawed and transplanted groups. CONCLUSIONS: One of the causes of primordial follicle loss after transplantation of ovarian graft may be decreased expression of the inhibitory proteins that guard the ovarian reserve and transplantation itself seems to be the major cause for disruption of inhibitory molecular signaling. Our findings highlight important molecular aspects for future clinical applications for fertility preservation in humans.


Assuntos
Criopreservação/veterinária , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Folículo Ovariano/metabolismo , Reserva Ovariana/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Preservação da Fertilidade , Folículo Ovariano/citologia , Folículo Ovariano/transplante , Ratos , Ratos Wistar , Transplante Autólogo , Proteína 1 do Complexo Esclerose Tuberosa
17.
Ann Neurol ; 83(1): 61-73, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29244233

RESUMO

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Assuntos
Química Encefálica , Depressão Alastrante da Atividade Elétrica Cortical/genética , Glicogênio/metabolismo , Privação do Sono/fisiopatologia , Animais , Arabinose/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Metabolismo Energético , Técnicas de Silenciamento de Genes , Proteína HMGB1/metabolismo , Imino Furanoses/farmacologia , Injeções Intraventriculares , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Floretina/farmacologia , Potássio/fisiologia , Álcoois Açúcares/farmacologia , Vibrissas/inervação
18.
Cytotherapy ; 19(12): 1351-1382, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28964742

RESUMO

The advances and success of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in experimental disease animal models have fueled the development of targeted therapies in humans. The therapeutic potential of allogeneic transplantation of UC-MSCs has been under examination since 2009. The purpose of this systematic analysis was to review the published results, limitations and obstacles for UC-MSC transplantation. An extensive search strategy was applied to the published literature, 93 peer-reviewed full-text articles and abstracts were found published by early August 2017 that investigated the safety, efficacy and feasibility of UC-MSCs in 2001 patients with 53 distinct pathologies including many systemic/local, acute/chronic conditions. Few data were extracted from the abstracts and/or Chinese-written articles (n = 7, 8%). Importantly, no long-term adverse effects, tumor formation or cell rejection were reported. All studies noted certain degrees of therapeutic benefit as evidenced by clinical symptoms and/or laboratory findings. Thirty-seven percent (n = 34) of studies were found published as a single case (n = 10; 11%) or 2-10 case reports (n = 24; 26%) with no control group. Due to the nature of many stem cell-based studies, the majority of patients also received conventional therapy regimens, which obscured the pure efficacy of the cells transplanted. Randomized, blind, phase 1/2 trials with control groups (placebo-controlled) showed more plausible results. Given that most UC-MSC trials are early phase, the internationally recognized cell isolation and preparation standards should be extended to future phase 2/3 trials to reach more convincing conclusions regarding the safety and efficacy of UC-MSC therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Cordão Umbilical/citologia , Animais , Diferenciação Celular , Separação Celular/métodos , Ensaios Clínicos como Assunto , Humanos , Células-Tronco Mesenquimais/citologia
19.
Data Brief ; 15: 170-173, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034286

RESUMO

The data presented in this article are related to the research article entitled "Behcet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger" (Lule et a. 2017) [1]. The immunoreactivity to self-antigens is well characterized for systemic lupus erythematosus (SLE) and multiple sclerosis (MS) (Magro Checa et al., 2013) [2]. Indirect immunofluorescence labeling of the mouse tissue sections with patient sera has recently been popular to discover novel epitopes and gain mechanistic insight to diseases with dysregulated immunity (Lennon et al., 2004) [3]. The present article demonstrates widespread labeling of cell nuclei with SLE patient sera and sporadic filamentous labeling along the axons with MS patient sera on mouse brain sections. The filamentous immunolabeling was sometimes associated with cytoplasmic staining of cells, which sent processes along the axon bundles, suggesting that they were oligodendrocytes. Since the mouse brain tissue has little autofluorescence and limited connective tissue causing non-specific immunolabeling, it appears superior to peripheral tissues for searching serum immunoreactivity.

20.
PLoS One ; 12(2): e0172026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182799

RESUMO

High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 µM ACR or 0, 25, or 250 µM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned.


Assuntos
Acrilamida/toxicidade , Compostos de Epóxi/toxicidade , Oócitos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oócitos/citologia , Fuso Acromático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...