RESUMO
BACKGROUND: Breast cancer (BC) is the most common female cancer and the leading cause of cancer death in women worldwide. Alterations in epithelial cadherin (E-cadherin) expression and functions are associated to BC, but the underlying molecular mechanisms have not been fully elucidated. We have previously reported a novel human E-cadherin splice variant (E-cadherin variant) mRNA. Stable transfectants in MCF-7 human BC cells (MCF7Ecadvar) depicted fibroblast-like cell morphology, E-cadherin wild-type downregulation, and other molecular changes characteristic of the epithelial-to-mesenchymal transition process, reduced cell-cell adhesion, and increased cell migration and invasion. In this study, a two-dimensional differential gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS) protein identification and bioinformatics analyses were done to characterize biological processes and canonical pathways affected by E-cadherin variant expression. RESULTS: By 2D-DIGE and MS analysis, 50 proteins were found differentially expressed (≥ Δ1.5) in MCF7Ecadvar compared to control cells. Validation of transcript expression was done in the ten most overexpressed and underexpressed proteins. Bioinformatics analyses revealed that 39 of the 50 proteins identified had been previously associated to BC. Moreover, metabolic processes were the most affected, and glycolysis the canonical pathway most altered. The lactate dehydrogenase B (LDHB) was the highest overexpressed protein, and transcript levels were higher in MCF7Ecadvar than in control cells. In agreement with these findings, MCF7Ecadvar conditioned media had lower glucose and higher lactate levels than control cells. MCF7Ecadvar cell treatment with 5 mM of the glycolytic inhibitor 2-deoxy-glucose led to decreased cell viability, and modulation of LDHB expression in MCF7Ecadvar cells with a specific small interfering RNA resulted in decreased cell proliferation. Finally, a positive association between expression levels of the E-cadherin variant and LDHB transcripts was demonstrated in 21 human breast tumor tissues, and breast tumor samples with higher Ki67 expression showed higher LDHB mRNA levels. CONCLUSIONS: Results from this investigation contributed to further characterize molecular changes associated to the novel E-cadherin splice variant expression in BC cells. They also revealed an association between expression of the novel variant and changes related to BC progression and aggressiveness, in particular those associated to cell metabolism.
RESUMO
BACKGROUND: How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. METHODS: The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test (n = 3, significance level 0.10, D > 0.642) and/or ANOVA (n = 3, p < 0.05). RESULTS: The results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. CONCLUSIONS: This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Estado Nutricional , Trofoblastos/metabolismo , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Metabolismo Energético/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Proteômica , Trofoblastos/fisiologiaRESUMO
This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.
Assuntos
Carboxipeptidases/metabolismo , Poliquetos/genética , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/genética , Sequência de Aminoácidos , Animais , Aprotinina/química , Aprotinina/genética , Aprotinina/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Carboxipeptidases/antagonistas & inibidores , Bovinos , Clonagem Molecular , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Análise de Sequência de DNA , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologiaRESUMO
After screening 25 marine invertebrates, a novel metallocarboxypeptidase (SmCP) has been identified by activity and MS analytical approaches, and isolated from the marine annelid Sabellastarte magnifica. The enzyme, which is a minor component of the molecularly complex animal body, as shown by 2D gel electrophoresis, has been purified from crude extracts to homogeneity by affinity chromatography on potato carboxypeptidase inhibitor and by ion exchange chromatography. SmCP is a protease of 33792 Da, displaying N-terminal and internal sequence homologies with M14 metallocarboxypeptidase-like enzymes, as determined by MS and automated Edman degradation. The enzyme contains one atom of Zn per molecule, is activated by Ca2+ and is drastically inhibited by the metal chelator 1,10-phenanthroline, as well as by excess Zn2+ or Cu2+, but moderately so by EDTA. SmCP is also strongly inhibited by specific inhibitors of metallocarboxypeptidases, such as benzylsuccinic acid and the protein inhibitors found in potato and leech (i.e. recombinant forms, both at nanomolar levels). The enzyme displays high peptidase efficiency towards pancreatic carboxypeptidase-A synthetic substrates, such as those with hydrophobic residues at the C-terminus but, remarkably, also towards the acidic ones. This property, previously described as for carboxypeptidase O-like activity, has been shown on long peptide substrates by MS. The results obtained in the present study indicate that SmCP is a novel member of the M14 metallocarboxypeptidases family (assignable to the M14A or pancreatic-like subfamily) with a wider specificity that has not been described previously.
Assuntos
Carboxipeptidases/metabolismo , Poliquetos/enzimologia , Animais , Cálcio/metabolismo , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/química , Cátions Bivalentes , Quelantes/química , Ácido Edético/química , Ativação Enzimática , Fenantrolinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Zinco/metabolismoRESUMO
Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.
Assuntos
Asclepias/enzimologia , Asclepias/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cisteína Endopeptidases/química , DNA Complementar/genética , Modelos Moleculares , Dados de Sequência Molecular , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
In this work we report the isolation, purification and characterization of a new protease from latex of Asclepias curassavica L. Crude extract (CE) was obtained by gathering latex on 0.1 M citric-phosphate buffer with EDTA and cysteine with subsequent ultracentrifugation. Proteolytic assays were made on casein or azocasein as substrates. Caseinolytic activity was completely inhibited by E-64. Stability at different temperatures, optimum pH and ionic strength were evaluated by measuring the residual caseinolytic activity at different times after the incubation. CE showed the highest caseinolytic activity at pH 8.5 in the presence of 12 mM cysteine. CE was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by SDS-PAGE, were isolated. The major purified protease (asclepain cI) showed a molecular mass of 23.2 kDa by mass spectrometry and a pI higher than 9.3. The N-terminal sequence showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-aminoacid-p-nitrophenyl esters, the enzyme showed higher preference for the glutamine derivative. Determinations of kinetic parameter (km and Kcat) were performed with PFLNA.
Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Látex/metabolismo , Sequência de Aminoácidos , Asclepias , Bioquímica/métodos , Caseínas/química , Cátions , Cromatografia por Troca Iônica , Cisteína/química , Relação Dose-Resposta a Droga , Ácido Edético/farmacologia , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Concentração de Íons de Hidrogênio , Íons , Cinética , Látex/química , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Tempo , UltracentrifugaçãoRESUMO
A cysteine endopeptidase, named funastrain c II, was isolated and characterized from the latex of Funastrum clausum (Asclepiadaceae). The molecular mass (mass spectrometry) of the protease was 23.636 kDa. The analysis of funastrain c II by SDS-PAGE revealed a single polypeptide chain. The enzyme showed a remarkable stability of its caseinolytic activity after incubation at temperatures as high as 70 degrees C. Inhibition and activation assays indicated the cysteinic nature of the funastrain c II catalytic site. The optimum pH of funastrain c II enzymatic activity varied according to the substrate used (9.0-10.0 for casein and 6.2-6.8 for PFLNA). Kinetic parameters were determined for N-alpha-CBZ-Ala p-nitrophenyl ester (Km = 0.0243 mM, kcat = 1.5 s(-1)) and L-pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA; KM = 0.1011 mM, kcat = 0.9 s(-1)). The N-terminal sequence of funastrain c II showed considerable similarity to other proteases isolated from latex of different Asclepiadaceae species as well as to other cysteine proteinases belonging to the papain family.