Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38316164

RESUMO

Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 25 is August 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409325

RESUMO

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Assuntos
Glicerol , Glicerofosfatos , Metabolismo dos Lipídeos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
3.
Kidney Int ; 105(1): 99-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054920

RESUMO

Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Interleucina 22 , Túbulos Renais Proximais , Injúria Renal Aguda/prevenção & controle , Morte Celular , Dano ao DNA , Reparo do DNA
4.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712948

RESUMO

Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to somatic alteration of PIK3CA and is accessible to pharmacological intervention.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Assimetria Facial , Mutação com Ganho de Função , Animais , Camundongos , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Hipertrofia , Humanos , Criança
5.
Genet Med ; 25(12): 100969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634128

RESUMO

PURPOSE: PIK3CA-related overgrowth spectrum (PROS) encompasses several rare conditions resulting from activating variants in PIK3CA. Alpelisib, a PI3Kα-selective inhibitor, targets the underlying etiology of PROS, offering a novel therapeutic approach to current management strategies. This study evaluated the safety and efficacy of alpelisib in pediatric and adult patients with PROS. METHODS: EPIK-P1 (NCT04285723) was a non-interventional, retrospective chart review of 57 patients with PROS (≥2 years) treated with alpelisib through compassionate use. Patients had severe/life-threatening PROS-related conditions and confirmed PIK3CA pathogenic variant. The primary end point assessed patient response to treatment at Week 24 (6 months). RESULTS: Twenty-four weeks (6 months) after treatment initiation, 12 of 32 (37.5%) patients with complete case records included in the analysis of the primary end point experienced a ≥20% reduction in target lesion(s) volume. Additional clinical benefit independent from lesion volume reduction was observed across the full study population. Adverse events (AEs) and treatment-related AEs were experienced by 82.5% (47/57) and 38.6% (22/57) of patients, respectively; the most common treatment-related AEs were hyperglycemia (12.3%) and aphthous ulcer (10.5%). No deaths occurred. CONCLUSION: EPIK-P1 provides real-world evidence of alpelisib effectiveness and safety in patients with PROS and confirms PI3Kα as a valid therapeutic target for PROS symptom management.


Assuntos
Tiazóis , Adulto , Humanos , Criança , Estudos Retrospectivos , Mutação , Tiazóis/efeitos adversos , Classe I de Fosfatidilinositol 3-Quinases/genética
6.
Nat Genet ; 55(7): 1091-1105, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337107

RESUMO

IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. Here we performed a genome-wide association study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls across 17 international cohorts. We defined 30 genome-wide significant risk loci explaining 11% of disease risk. A total of 16 loci were new, including TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci were enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in mice. We also observed a positive genetic correlation between IgAN and serum IgA levels. High polygenic score for IgAN was associated with earlier onset of kidney failure. In a comprehensive functional annotation analysis of candidate causal genes, we observed convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.


Assuntos
Glomerulonefrite por IGA , Animais , Camundongos , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/diagnóstico , Estudo de Associação Genômica Ampla , Imunoglobulina A/genética
7.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333314

RESUMO

Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI. The factors that trigger the switch from pro-reparative to pro-cell death DDR remain to be resolved. Here we investigate the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identify PTCs as a novel source of urinary IL-22, making PTCs the only epithelial cells known to secret IL-22, to our knowledge. Functionally, IL-22 binding its receptor (IL-22RA1) on PTCs amplifies the DDR. Treating primary PTCs with IL-22 alone induces rapid activation of the DDR in vitro. The combination of IL-22 + cisplatin or AA treatment on primary PTCs induces cell death, while the same dose of cisplatin or AA alone does not. Global deletion of IL-22 protects against cisplatin or AA induced AKI. IL-22 deletion reduces expression of components of the DDR and inhibits PTC cell death. To confirm PTC IL-22 signaling contributes to AKI, we knocked out IL-22RA1 in renal epithelial cells by crossing IL-22RA1floxed mice with Six2-Cre mice. IL-22RA1 KO reduced DDR activation, cell death, and kidney injury. These data demonstrate that IL-22 promotes DDR activation in PTCs, switching pro-recovery DDR responses to a pro-cell death response and worsening AKI. Targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with the processes necessary for repair of damaged DNA.

8.
J Intern Med ; 294(4): 397-412, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211972

RESUMO

Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.


Assuntos
Medicina de Precisão , Doenças Raras , Humanos , Medicina de Precisão/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Genômica/métodos , Análise de Sequência de DNA , Progressão da Doença
9.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982451

RESUMO

Cajal-Retzius cells (CRs) are a class of transient neurons in the mammalian cortex that play a critical role in cortical development. Neocortical CRs undergo almost complete elimination in the first two postnatal weeks in rodents and the persistence of CRs during postnatal life has been detected in pathological conditions related to epilepsy. However, it is unclear whether their persistence is a cause or consequence of these diseases. To decipher the molecular mechanisms involved in CR death, we investigated the contribution of the PI3K/AKT/mTOR pathway as it plays a critical role in cell survival. We first showed that this pathway is less active in CRs after birth before massive cell death. We also explored the spatio-temporal activation of both AKT and mTOR pathways and reveal area-specific differences along both the rostro-caudal and medio-lateral axes. Next, using genetic approaches to maintain an active pathway in CRs, we found that the removal of either PTEN or TSC1, two negative regulators of the pathway, lead to differential CR survivals, with a stronger effect in the Pten model. Persistent cells in this latter mutant are still active. They express more Reelin and their persistence is associated with an increase in the duration of kainate-induced seizures in females. Altogether, we show that the decrease in PI3K/AKT/mTOR activity in CRs primes these cells to death by possibly repressing a survival pathway, with the mTORC1 branch contributing less to the phenotype.


Assuntos
Ácido Caínico , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Ácido Caínico/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Convulsões/induzido quimicamente , Mamíferos/metabolismo
10.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490341

RESUMO

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Assuntos
Tecido Adiposo , Classe I de Fosfatidilinositol 3-Quinases , Mutação com Ganho de Função , Animais , Camundongos , Tecido Adiposo/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mutação com Ganho de Função/genética , Mutação , Fenótipo
11.
J Autoimmun ; 132: 102889, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987174

RESUMO

BACKGROUND: Antiphospholipid syndrome (APS) nephropathy (APSN) is a rare pattern with specific features resulting from microvascular lesions. The prognosis of APSN, outside of lupus nephritis, is unknown. The aim of this study was to describe the renal, vascular and overall outcomes of patients with APSN. METHODS: Retrospective multicenter study of patients with antiphospholipid antibodies (aPL) associated with histological APSN lesions and no other nephropathy, identified through a national call for medical records. End-stage renal disease (ESRD)-free survival, thrombosis recurrence-free survival and overall survival were assessed. RESULTS: Thirty patients were included (19 women) with a median age of 40 years (34-52 years). Fifteen patients had APS, 26/28 had lupus anticoagulant, and 15/26 had triple positivity for aPL. Median eGFR was 50 (31-60) mL/min/1.73 m2. Glomerular thrombotic microangiopathy was found in 12/24 cases, fibrous intimal hyperplasia in 12/22 cases and focal cortical atrophy in 17/29 cases. Nineteen patients had moderate to severe interstitial fibrosis (>25%). Six patients developed ESRD at a median follow-up of 6.2 (1.8-9.1) years. The ESRD-free survival rates at 5 and 10 years were 80.0% (95% CI 57.6%-91.4%) and 72.7% (95% CI, 46.9%-87.4%) respectively. None of the histological factors considered was significantly associated with a decrease in eGFR at 12 months. Thrombosis recurrence-free survival was 77.8% (95% CI 48.2%-91.6%) at 10 years. Overall survival was 94% at 10 years (95% CI 65.0%-99.2%). CONCLUSIONS: The renal prognosis of isolated APSN is poor. The severe fibrotic lesions observed are suggestive of late diagnosis.


Assuntos
Síndrome Antifosfolipídica , Nefropatias , Falência Renal Crônica , Humanos , Feminino , Adulto , Síndrome Antifosfolipídica/diagnóstico , Nefropatias/diagnóstico , Nefropatias/etiologia , Rim , Anticorpos Antifosfolipídeos , Inibidor de Coagulação do Lúpus , Falência Renal Crônica/etiologia
13.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35080595

RESUMO

PIK3CA-related overgrowth spectrum (PROS) includes rare genetic conditions due to gain-of-function mutations in the PIK3CA gene. There is no approved medical therapy for patients with PROS, and alpelisib, an approved PIK3CA inhibitor in oncology, showed promising results in preclinical models and in patients. Here, we report for the first time the outcome of two infants with PROS having life-threatening conditions treated with alpelisib (25 mg) and monitored with pharmacokinetics. Patient 1 was an 8-mo-old girl with voluminous vascular malformation. Patient 2 was a 9-mo-old boy presenting with asymmetrical body overgrowth and right hemimegalencephaly with West syndrome. After 12 mo of follow-up, alpelisib treatment was associated with improvement in signs and symptoms, morphological lesions and vascular anomalies in the two patients. No adverse events were reported during the study. In this case series, pharmacological inhibition of PIK3CA with low-dose alpelisib was feasible and associated with clinical improvements, including a smaller size of associated complex tissue malformations and good tolerability.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/etiologia , Tiazóis/uso terapêutico , Biomarcadores , Diagnóstico por Imagem , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Transtornos do Crescimento/diagnóstico , Humanos , Lactente , Masculino , Fenótipo , Tiazóis/administração & dosagem , Tiazóis/efeitos adversos , Resultado do Tratamento
14.
Sci Transl Med ; 13(614): eabg0809, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613809

RESUMO

Lymphatic cystic malformations are rare genetic disorders mainly due to somatic gain-of-function mutations in the PIK3CA gene. These anomalies are frequently associated with pain, inflammatory flares, esthetic deformities, and, in severe forms, life-threatening conditions. There is no approved medical therapy for patients with lymphatic malformations. In this proof-of-concept study, we developed a genetic mouse model of PIK3CA-related lymphatic malformations that recapitulates human disease. Using this model, we demonstrated the efficacy of alpelisib, an approved pharmacological inhibitor of PIK3CA in oncology, in preventing lymphatic malformation occurrence, improving lymphatic anomalies, and extending survival. On the basis of these results, we treated six patients with alpelisib, including three children, displaying severe PIK3CA-related lymphatic malformations. Patients were already unsuccessfully treated with rapamycin, percutaneous sclerotherapies, and debulking surgical procedures. We assessed the volume of lymphatic malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib administration was associated with improvements in the six patients. Previously intractable vascular malformations shrank, and pain and inflammatory flares were attenuated. MRI showed a decrease of 48% in the median volume of lymphatic malformations over 6 months on alpelisib. During the study, two patients developed adverse events potentially related to alpelisib, including grade 1 mucositis and diarrhea. In conclusion, this study supports PIK3CA inhibition as a promising therapeutic strategy in patients with PIK3CA-related lymphatic anomalies.


Assuntos
Tiazóis , Animais , Humanos , Camundongos
15.
Br Med Bull ; 140(1): 36-49, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530449

RESUMO

INTRODUCTION OR BACKGROUND: Mosaic overgrowth syndromes (OS) are a proteiform ensemble of rare diseases displaying asymmetric overgrowth involving any tissue type, with degrees of severity ranging from isolated malformation to life-threatening conditions such as pulmonary embolism. Despite discordant clinical presentations, all those syndromes share common genetic anomalies: somatic mutations of genes involved in cell growth and proliferation. The PI3K-AKT-mTOR signaling pathway is one of the most prominent regulators of cell homeostasis, and somatic oncogenic mutations affecting this pathway are responsible for mosaic OS. This review aims to describe the clinical and molecular characteristics of the main OS involving the PI3K-AKT-mTOR pathway, along with the treatments available or under development. SOURCES OF DATA: This review summarizes available data regarding OS in scientific articles published in peer-reviewed journals. AREAS OF AGREEMENT: OS care requires a multidisciplinary approach relying on clinical and radiological follow-up along with symptomatic treatment. However, no specific treatment has yet shown efficacy in randomized control trials. AREAS OF CONTROVERSY: Clinical classifications of OS led to frequent misdiagnosis. Moreover, targeted therapies directed at causal mutated proteins are developing in OSs through cancer drugs repositioning, but the evidence of efficacy and tolerance is still lacking for most of them. GROWING POINTS: The genetic landscape of OS is constantly widening and molecular classifications tend to increase the accuracy of diagnosis, opening opportunities for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH: OS are a dynamic, expanding field of research. Studies focusing on the identification of genetic anomalies and their pharmacological inhibition are needed.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Orphanet J Rare Dis ; 16(1): 306, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238334

RESUMO

BACKGROUND: PIK3CA-related disorders include vascular malformations and overgrowth of various tissues that are caused by postzygotic, somatic variants in the gene encoding phosphatidylinositol-3-kinase (PI3K) catalytic subunit alpha. These mutations result in activation of the PI3K/AKT/mTOR signaling pathway. The goals of this review are to provide education on the underlying mechanism of disease for this group of rare conditions and to summarize recent advancements in the understanding of, as well as current and emerging treatment options for PIK3CA-related disorders. MAIN BODY: PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. Somatic activating mutations (predominantly in hotspots in the helical and kinase domains of PIK3CA, but also in other domains), lead to hyperactivation of the PI3K signaling pathway, which results in abnormal tissue growth. Diagnosis is complicated by the variability and overlap in phenotypes associated with PIK3CA-related disorders and should be performed by clinicians with the required expertise along with coordinated care from a multidisciplinary team. Although tissue mosaicism presents challenges for confirmation of PIK3CA mutations, next-generation sequencing and tissue selection have improved detection. Clinical improvement, radiological response, and patient-reported outcomes are typically used to assess treatment response in clinical studies of patients with PIK3CA-related disorders, but objective assessment of treatment response is difficult using imaging (due to the heterogeneous nature of these disorders, superimposed upon patient growth and development). Despite their limitations, patient-reported outcome tools may be best suited to gauge patient improvement. New therapeutic options are needed to provide an alternative or supplement to standard approaches such as surgery and sclerotherapy. Currently, there are no systemic agents that have regulatory approval for these disorders, but the mTOR inhibitor sirolimus has been used for several years in clinical trials and off label to address symptoms. There are also other agents under investigation for PIK3CA-related disorders that act as inhibitors to target different components of the PI3K signaling pathway including AKT (miransertib) and PI3K alpha (alpelisib). CONCLUSION: Management of patients with PIK3CA-related disorders requires a multidisciplinary approach. Further results from ongoing clinical studies of agents targeting the PI3K pathway are highly anticipated.


Assuntos
Transtornos do Crescimento , Fosfatidilinositol 3-Quinases , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
17.
C R Biol ; 344(2): 189-201, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34213856

RESUMO

This review recapitulates the recent knowledge accumulation on overgrowth syndrome related to gain of function of the phosphoinositide3 kinase (PI3K)-alpha. These disorders, known as PIK3CA related overgrowth syndromes (PROS) are caused by somatic PIK3CA mutation occurring during embryogenesis. We summarize here the currently available animal models and new treatments undergoing development.


Cette revue détaille un syndrome d'hypercroissance dysharmonieuse récemment identifié : le syndrome d'hypercroissance dysharmonieuse lié à PIK3CA. Ce syndrome est dû à une activation en mosaïque de la voie PI3K-AKT-mTOR. Une mutation activatrice du gène PIK3CA est responsable de l'activation de la voie et des manifestations cliniques associées. Dans cette revue, nous avons répertorié les modèles animaux de ces syndromes ainsi que les traitements en cours d'expérimentation.


Assuntos
Descoberta de Drogas , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Mutação
19.
J Am Soc Nephrol ; 32(9): 2362-2374, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34155059

RESUMO

BACKGROUND: Renal involvement in ANCA-associated vasculitis (AAV) is associated with poor outcomes. The clinical significance of arteritis of the small kidney arteries has not been evaluated in detail. METHODS: In a multicenter cohort of patients with AAV and renal involvement, we sought to describe the clinicopathologic characteristics of patients with AAV who had renal arteritis at diagnosis, and to retrospectively analyze their prognostic value. RESULTS: We included 251 patients diagnosed with AAV and renal involvement between 2000 and 2019, including 34 patients (13.5%) with arteritis. Patients with AAV-associated arteritis were older, and had a more pronounced inflammatory syndrome compared with patients without arteritis; they also had significantly lower renal survival (P=0.01). In multivariable analysis, the ANCA renal risk score, age at diagnosis, history of diabetes mellitus, and arteritis on index kidney biopsy were independently associated with ESKD. The addition of the arteritis status significantly improved the discrimination of the ANCA renal risk score, with a concordance index (C-index) of 0.77 for the ANCA renal risk score alone, versus a C-index of 0.80 for the ANCA renal risk score plus arteritis status (P=0.008); ESKD-free survival was significantly worse for patients with an arteritis involving small arteries who were classified as having low or moderate risk, according to the ANCA renal risk score. In two external validation cohorts, we confirmed the incidence and phenotype of this AAV subtype. CONCLUSIONS: Our findings suggest AAV with renal arteritis represents a different subtype of AAV with specific clinical and histologic characteristics. The prognostic contribution of the arteritis status remains to be prospectively confirmed.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Arterite/complicações , Arterite/diagnóstico , Falência Renal Crônica/epidemiologia , Artéria Renal , Idoso , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/mortalidade , Arterite/mortalidade , Intervalo Livre de Doença , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco
20.
J Am Soc Nephrol ; 32(8): 1974-1986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078664

RESUMO

BACKGROUND: CKD is associated with the loss of functional nephr ons, leading to increased mechanical and metabolic stress in the remaining cells, particularly for cells constituting the filtration barrier, such as podocytes. The failure of podocytes to mount an adequate stress response can lead to further nephron loss and disease progression. However, the mechanisms that regulate this degenerative process in the kidney are unknown. METHODS: We combined in vitro, in vivo, and organ-on-chip approaches to identify the RE1-silencing transcription factor (REST), a repressor of neuronal genes during embryonic development, as a central regulator of podocyte adaptation to injury and aging. RESULTS: Mice with a specific deletion of REST in podocytes exhibit albuminuria, podocyte apoptosis, and glomerulosclerosis during aging, and exhibit increased vulnerability to renal injury. This phenotype is mediated, in part, by the effects of REST on the podocyte cytoskeleton that promote resistance to mechanical stressors and augment podocyte survival. Finally, REST expression is upregulated in human podocytes during aging, consistent with a conserved mechanism of stress resistance. CONCLUSIONS: These results suggest REST protects the kidney from injury and degeneration during aging, with potentially important therapeutic implications.


Assuntos
Adaptação Fisiológica/genética , Envelhecimento/fisiologia , Podócitos/patologia , Podócitos/fisiologia , Proteínas Repressoras/genética , Estresse Fisiológico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminúria/genética , Animais , Apoptose/genética , Linhagem Celular , Sobrevivência Celular , Citoesqueleto/fisiologia , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Camundongos , Fenótipo , Proteínas Repressoras/metabolismo , Esclerose , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...