Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231949

RESUMO

Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber-matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of "pull-out". Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.

2.
Materials (Basel) ; 15(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161170

RESUMO

Poly(hydroxybutyrate) (PHB) is a biopolymer biologically synthesized by controlled bacterial fermentation from a wide variety of microorganisms. PHB is proposed as a potential green alternative to commonly used plastics in packaging, due to its biodegradability and biocompatibility. However, if PHB is to replace commodities, it has some limitations regarding its thermo-mechanical performance to overcome. Among them are its critically the low toughness values at room temperature and poor thermoforming ability. With the aim of overcoming these weaknesses, in this work, blends of PHB with the addition of a biodegradable thermoplastic elastomer (bio-TPE) were prepared and evaluated. Films of such compounds were made by cast extrusion. In order to enhance the compatibility of both polymers during the extrusion process, three different reactive agents (poly-hexametylene diisocianate, triglycidyl isocyanurate, and Joncryl® ADR-4368) were assessed. The morphology and mechanical- and thermal properties of the films obtained were analyzed. In addition, the thermoforming ability of the produced films was evaluated. The results show that the plasticizers present in the bio-TPE interacted with the reactive agents, making them chemical competitors and altering the outcome of the blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...