Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 18(8): 543-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21394110

RESUMO

Multicomponent lipoplexes have recently emerged as especially promising transfection candidates, as they are from 10 to 100 times more efficient than binary complexes usually employed for gene delivery purposes. Previously, we investigated a number of chemical-physical properties of DNA-lipid complexes that were proposed to affect transfection efficiency (TE) of lipoplexes, such as nanoscale structure, size, surface potential, DNA-protection ability and DNA release from complexes upon interaction with cellular lipids. Although some minor differences between multicomponent and binary lipoplexes were found, they did not correlate clearly with efficiency. Instead, here we show that a marked difference between the cell internalization mechanism of binary and multicomponent lipoplexes does exist. Multicomponent lipoplexes significantly transfect cells at 4 °C, when endocytosis does not take place suggesting that they can enter cells via a temperature-independent mechanism. Confocal fluorescence microscopy experiments showed the existence of a correlation between endosomal escape and TE. Multicomponent lipoplexes exhibited a distinctive ability of endosomal escape and release DNA into the nucleus, whereas, poorly efficient binary lipoplexes exhibited minor, if any, endosomal rupture ability and remained confined in perinuclear late endosomes. Stopped-flow mixing measurements showed that the fusion rates of multicomponent cationic liposomes with anionic vesicles, used as model systems of cell membranes, were definitely shorter than those of binary liposomes. As either lipoplex uptake and endosomal escape involve fusion between lipoplex and cellular membranes, we suggest that a mechanism of lipoplex-cellular membrane interaction, driven by lipid mixing between cationic and anionic cellular lipids, does explain the TE boost of multicomponent lipoplexes.


Assuntos
Membrana Celular/química , Terapia Genética/métodos , Lipossomos/química , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Lipossomos/metabolismo , Microscopia Confocal , Transfecção
2.
J Lipid Res ; 28(5): 483-9, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3598393

RESUMO

Crystals of sodium taurodeoxycholate monohydrate, NaC26H44NO6S X H2O, are trigonal, space group P3(1), with a = 18.393(1), c = 7.097(1)A, V = 2079.3(5)A3, and Z = 3. The structure was solved by direct methods and Fourier techniques and refined by full-matrix least-squares calculations. The final R index is 0.051. The side chair of the anion displays an approximate folded-back conformation. The cyclopentane ring assumes an intermediate conformation between the half-chain and the beta-envelope. The sodium ion shows a distorted octahedral coordination with six oxygen atoms, giving rise to ion-ion and ion-dipole interactions. The molecules form helices, characterized by threefold screw axes, with a radius of about 16 A. The helices are packed in such a way as to be embedded in each other as cog-wheels. The helix found in this crystal structure will be used as a model and checked in the study of the micellar solutions of sodium taurodeoxycholate, following the same strategy satisfactorily employed in the case of sodium deoxycholate.


Assuntos
Ácidos e Sais Biliares/análise , Ácido Desoxicólico/análogos & derivados , Ácido Taurodesoxicólico/análise , Cristalização , Micelas , Modelos Químicos , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...