Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 138: 1-14, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35941042

RESUMO

The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Humanos , Crista Neural/metabolismo , Redes Reguladoras de Genes , Neurogênese , Células-Tronco Embrionárias
2.
STAR Protoc ; 1(2): 100066, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111104

RESUMO

Chromatin immunoprecipitation with sequencing (ChIP-seq) has been instrumental in understanding transcription factor (TF) binding during gene regulation. ChIP-seq requires specific antibodies against desired TFs, which are not available for numerous species. Here, we describe a tissue-specific biotin ChIP-seq protocol for zebrafish and chicken embryos which utilizes AVI tagging of TFs, permitting their biotinylation by a co-expressed nuclear biotin ligase. Subsequently, biotinylated factors can be precipitated with streptavidin beads, enabling the user to construct TF genome-wide binding landscapes like conventional ChIP-seq methods. For complete details on the use and execution of this protocol, please see Lukoseviciute et al. (2018) and Ling and Sauka-Spengler (2019).


Assuntos
Biotina/química , Imunoprecipitação da Cromatina/métodos , Análise de Sequência de DNA/métodos , Animais , Biotina/metabolismo , Células Cultivadas , Galinhas/genética , Especificidade de Órgãos/fisiologia , Estreptavidina/química , Estreptavidina/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
3.
Nat Commun ; 10(1): 4689, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619682

RESUMO

The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration. ATAC-seq analysis uncovers an ensemble of cis-regulatory elements, including enhancers of Tfap2B, SoxE1 and Hox-α2 validated in the embryo. Cross-species deployment of lamprey elements identifies the deep conservation of lamprey SoxE1 enhancer activity, mediating homologous expression in jawed vertebrates. Our data provide insight into the core GRN elements conserved to the base of the vertebrates and expose others that are unique to lampreys.


Assuntos
Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Movimento Celular/genética , Redes Reguladoras de Genes , Crista Neural/metabolismo , Fatores de Transcrição/genética , Animais , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Petromyzon , Fatores de Transcrição SOX/genética , Fator de Transcrição AP-2/genética
4.
Dev Cell ; 51(2): 255-276.e7, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31639368

RESUMO

Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Crista Neural/embriologia , Ativação Transcricional/genética , Animais , Heterogeneidade Genética , Vertebrados/genética
5.
Front Immunol ; 7: 664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119686

RESUMO

The ubiquitin-proteasome pathway (UPP) is a hallmark of the eukaryotic cell. In jawed vertebrates, it has been co-opted by the adaptive immune system, where proteasomal degradation produces endogenous peptides for major histocompatibility complex class I antigen presentation. However, proteolytic products are also necessary for the phylogenetically widespread innate immune system, as they often play a role as host defense peptides (HDPs), pivotal effectors against pathogens. Here, we report the identification of the arachnid HDP oligoventin, which shares homology to a core member of the UPP, E3 ubiquitin ligases. Oligoventin has broad antimicrobial activity and shows strong synergy with lysozymes. Using computational and phylogenetic approaches, we show high conservation of the oligoventin signature in HECT E3s. In silico simulation of HECT E3s self-proteolysis provides evidence that HDPs can be generated by fine-tuned 26S proteasomal degradation, and therefore are consistent with the hypothesis that oligoventin is a cryptic peptide released by the proteolytic processing of an Nedd4 E3 precursor protein. Finally, we compare the production of HDPs and endogenous antigens from orthologous HECT E3s by proteasomal degradation as a means of analyzing the UPP coupling to metazoan immunity. Our results highlight the functional plasticity of the UPP in innate and adaptive immune systems as a possibly recurrent mechanism to generate functionally diverse peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...