RESUMO
Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-ß and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-ß and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.
Assuntos
Granuloma , Cirrose Hepática , Prostaglandina D2 , Receptores Imunológicos , Receptores de Prostaglandina , Schistosoma mansoni , Esquistossomose mansoni , Animais , Prostaglandina D2/metabolismo , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia , Esquistossomose mansoni/parasitologia , Camundongos , Receptores de Prostaglandina/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Granuloma/parasitologia , Granuloma/metabolismo , Granuloma/patologia , Receptores Imunológicos/metabolismo , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Masculino , Feminino , Carbazóis , Piperidinas , SulfonamidasRESUMO
Leishmaniasis is a neglected tropical parasitic disease with few approved medications. Cutaneous leishmaniasis (CL) is the most frequent form, responsible for 0.7 - 1.0 million new cases annually worldwide. Leukotrienes are lipid mediators of inflammation produced in response to cell damage or infection. They are subdivided into leukotriene B4 (LTB4) and cysteinyl leukotrienes LTC4 and LTD4 (Cys-LTs), depending on the enzyme responsible for their production. Recently, we showed that LTB4 could be a target for purinergic signaling controlling Leishmania amazonensis infection; however, the importance of Cys-LTs in the resolution of infection remained unknown. Mice infected with L. amazonensis are a model of CL infection and drug screening. We found that Cys-LTs control L. amazonensis infection in susceptible (BALB/c) and resistant (C57BL/6) mouse strains. In vitro, Cys-LTs significantly diminished the L. amazonensis infection index in peritoneal macrophages of BALB/c and C57BL/6 mice. In vivo, intralesional treatment with Cys-LTs reduced the lesion size and parasite loads in the infected footpads of C57BL/6 mice. The anti-leishmanial role of Cys-LTs depended on the purinergic P2X7 receptor, as infected cells lacking the receptor did not produce Cys-LTs in response to ATP. These findings suggest the therapeutic potential of LTB4 and Cys-LTs for CL treatment.
Assuntos
Leishmaniose Cutânea , Leishmaniose , Camundongos , Animais , Camundongos Endogâmicos C57BL , Leucotrienos/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Cisteína , Leucotrieno B4 , Leishmaniose/patologiaRESUMO
Introduction: Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods: Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion: Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-ß, and TGF-ß. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-ß-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-ß-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.
Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Aspirina/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Pulmão/patologia , Bleomicina/farmacologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
The severe acute respiratory syndrome coronavirus 2, the agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, has spread worldwide since it was first identified in November 2019 in Wuhan, China. Since then, progress in pathogenesis linked severity of this systemic disease to the hyperactivation of network of cytokine-driven pro-inflammatory cascades. Here, we aimed to identify molecular biomarkers of disease severity by measuring the serum levels of inflammatory mediators in a Brazilian cohort of patients with COVID-19 and healthy controls (HCs). Critically ill patients in the intensive care unit were defined as such by dependence on oxygen supplementation (93% intubated and 7% face mask), and computed tomography profiles showing ground-glass opacity pneumonia associated to and high levels of D-dimer. Our panel of mediators included HMGB1, ATP, tissue factor, PGE2 , LTB4 , and cys-LTs. Follow-up studies showed increased serum levels of every inflammatory mediator in patients with COVID-19 as compared to HCs. Originally acting as a transcription factor, HMGB1 acquires pro-inflammatory functions following secretion by activated leukocytes or necrotic tissues. Serum levels of HMGB1 were positively correlated with cys-LTs, D-dimer, aspartate aminotransferase, and alanine aminotransferase. Notably, the levels of the classical alarmin HMGB1 were higher in deceased patients, allowing their discrimination from patients that had been discharged at the early pulmonary and hyperinflammatory phase of COVID-19. In particular, we verified that HMGB1 levels above 125.4 ng/ml is the cutoff that distinguishes patients that are at higher risk of death. In conclusion, we propose the use of serum levels of HMGB1 as a biomarker of severe prognosis of COVID-19.
Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Tromboplastina , COVID-19/diagnóstico , Biomarcadores , Prognóstico , Lipídeos , Trifosfato de AdenosinaRESUMO
Age increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system. We demonstrate that genetic suppression of 5-lipoxygenase (5-LOX), the enzyme mediating LXA4 synthesis, promotes learning impairment in mice. Conversely, administration of exogenous LXA4 attenuated cytokine production and memory loss induced by inflammation in mice. We further show that cerebrospinal fluid LXA4 is reduced in patients with dementia and positively associated with cognitive performance, brain-derived neurotrophic factor (BDNF), and AD-linked amyloid-ß. Our findings suggest that reduced LXA4 levels may lead to vulnerability to age-related cognitive disorders and that promoting LXA4 signaling may comprise an effective strategy to prevent early cognitive decline in AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Lipoxinas , Idoso , Doença de Alzheimer/genética , Animais , Araquidonato 5-Lipoxigenase/genética , Fator Neurotrófico Derivado do Encéfalo , Cognição , Citocinas , Endocanabinoides , Humanos , Inflamação , Mediadores da Inflamação , Lipoxinas/metabolismo , CamundongosRESUMO
Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-ß (TGF-ß) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.
Assuntos
Difosfato de Adenosina/farmacologia , Diabetes Mellitus Experimental/complicações , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Cicatrização/efeitos dos fármacos , Difosfato de Adenosina/uso terapêutico , Administração Cutânea , Aloxano/administração & dosagem , Aloxano/toxicidade , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Humanos , Masculino , Camundongos , Agonistas do Receptor Purinérgico P2Y/uso terapêutico , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologiaRESUMO
Clinical and experimental studies have described eosinophil infiltration in Leishmania amazonensis infection sites, positioning eosinophils strategically adjacent to the protozoan-infected macrophages in cutaneous leishmaniasis. Here, by co-culturing mouse eosinophils with L. amazonensis-infected macrophages, we studied the impact of eosinophils on macrophage ability to regulate intracellular L. amazonensis infection. Eosinophils prevented the increase in amastigote numbers within macrophages by a mechanism dependent on a paracrine activity mediated by eosinophil-derived prostaglandin (PG) D2 acting on DP2 receptors. Exogenous PGD2 mimicked eosinophil-mediated effect on managing L. amazonensis intracellular infection by macrophages and therefore may function as a complementary tool for therapeutic intervention in L. amazonensis-driven cutaneous leishmaniasis.
Assuntos
Eosinófilos/imunologia , Leishmaniose/imunologia , Macrófagos/imunologia , Prostaglandina D2/imunologia , Animais , Eosinófilos/metabolismo , Feminino , Leishmania/imunologia , Leishmaniose/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Comunicação Parácrina/imunologia , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismoRESUMO
Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.
Assuntos
Eosinófilos/efeitos dos fármacos , Leptina/farmacologia , Mastócitos/fisiologia , Prostaglandina D2/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CCL5/fisiologia , Eosinófilos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. P2X7 receptor has been linked to the elimination of Leishmania amazonensis. Biological responses evoked by P2X7 receptor activation have been well-documented, including apoptosis, phagocytosis, cytokine release, such as IL-1ß. It was demonstrated that NLRP3 inflammasome activation and IL-1ß signaling participated in resistance against L. amazonensis. Furthermore, our group has shown that L. amazonensis elimination through P2X7 receptor activation depended on leukotriene B4 (LTB4) production and release. Therefore, we investigated whether L. amazonensis elimination by P2X7 receptor and LTB4 involved NLRP3 inflammasome activation and IL-1ß signaling. We showed that macrophages from NLRP3-/-, ASC-/-, Casp-1/11-/-, gp91phox-/- , and IL-1R-/- mice treated with ATP or LTB4 did not decrease parasitic load as was observed in WT mice. When ASC-/- macrophages were treated with exogenous IL-1ß, parasite killing was noted, however, we did not see parasitic load reduction in IL-1R-/- macrophages. Similarly, macrophages from P2X7 receptor-deficient mice treated with IL-1ß also showed decreased parasitic load. In addition, when we infected Casp-11-/- macrophages, neither ATP nor LTB4 were able to reduce parasitic load, and Casp-11-/- mice were more susceptible to L. amazonensis infection than were WT mice. Furthermore, P2X7-/- L. amazonensis-infected mice locally treated with exogenous LTB4 showed resistance to infection, characterized by lower parasite load and smaller lesions compared to untreated P2X7-/- mice. A similar observation was noted when infected P2X7-/- mice were treated with IL-1ß, i.e., lower parasite load and smaller lesions compared to P2X7-/- mice. These data suggested that L. amazonensis elimination mediated by P2X7 receptor and LTB4 was dependent on non-canonical NLRP3 inflammasome activation, ROS production, and IL-1ß signaling.
Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Leucotrieno B4/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/imunologia , Animais , Inflamassomos/genética , Interleucina-1beta/genética , Leishmaniose/genética , Leishmaniose/patologia , Leucotrieno B4/genética , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/genéticaRESUMO
Wound healing is a well-coordinated process that involves inflammatory mediators and cellular responses; however, if any disturbances are present during this process, tissue repair is impaired. Chronic wounds are one of the serious long-term complications associated with diabetes mellitus. The chemokine receptor CCR4 and its respective ligands, CCL17 and CCL22, are involved in regulatory T cell recruitment and activation in inflamed skin; however, the role of regulatory T cells in wounds is still not clear. Our aim was to investigate the role of CCR4 and regulatory T cells in cutaneous wound healing in diabetic mice. Alloxan-induced diabetic wild- type mice (diabetic) developed wounds that were difficult to heal, differently from CCR4-/- diabetic mice (CCR4-/- diabetic), and also from anti-CCL17/22 or anti-CD25-injected diabetic mice that presented with accelerated wound healing and fewer regulatory T cells in the wound bed. Consequently, CCR4-/- diabetic mice also presented with alteration on T cells population in the wound and draining lymph nodes; on day 14, these mice also displayed an increase of collagen fiber deposition. Still, cytokine levels were decreased in the wounds of CCR4-/- diabetic mice on day 2. Our data suggest that the receptor CCR4 and regulatory T cells negatively affect wound healing in diabetic mice.
Assuntos
Quimiocina CCL17/antagonistas & inibidores , Quimiocina CCL22/antagonistas & inibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores CCR4/metabolismo , Cicatrização/efeitos dos fármacos , Aloxano/farmacologia , Análise de Variância , Animais , Biópsia por Agulha , Quimiocina CCL17/farmacologia , Quimiocina CCL22/farmacologia , Quimiocinas/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real/métodos , Cicatrização/fisiologiaRESUMO
Leptin is a cytokine, produced mainly by mature adipocytes, that regulates the central nervous system, mainly to suppress appetite and stimulate energy expenditure. Leptin also regulates the immune response by controlling activation of immunomodulatory cells, including eosinophils. While emerging as immune regulatory cells with roles in adipose tissue homeostasis, eosinophils have a well-established ability to synthesize pro-inflammatory molecules such as lipid mediators, a key event in several inflammatory pathologies. Here, we investigated the impact and mechanisms involved in leptin-driven activation of eicosanoid-synthesizing machinery within eosinophils. Direct in vitro activation of human or mouse eosinophils with leptin elicited synthesis of lipoxygenase as well as cyclooxygenase products. Displaying selectivity, leptin triggered synthesis of LTC4 and PGD2, but not PGE2, in parallel to dose-dependent induction of lipid body/lipid droplets biogenesis. While dependent on PI3K activation, leptin-driven eosinophil activation was also sensitive to pertussis toxin, indicating the involvement of G-protein coupled receptors on leptin effects. Leptin-induced lipid body-driven LTC4 synthesis appeared to be mediated through autocrine activation of G-coupled CCR3 receptors by eosinophil-derived CCL5, inasmuch as leptin was able to trigger rapid CCL5 secretion, and neutralizing anti-RANTES or anti-CCR3 antibodies blocked lipid body assembly and LTC4 synthesis induced by leptin. Remarkably, autocrine activation of PGD2 G-coupled receptors DP1 and DP2 also contributes to leptin-elicited lipid body-driven LTC4 synthesis by eosinophils in a PGD2-dependent fashion. Blockade of leptin-induced PGD2 autocrine/paracrine activity by a specific synthesis inhibitor or DP1 and DP2 receptor antagonists, inhibited both lipid body biogenesis and LTC4 synthesis induced by leptin stimulation within eosinophils. In addition, CCL5-driven CCR3 activation appears to precede PGD2 receptor activation within eosinophils, since neutralizing anti-CCL5 or anti-CCR3 antibodies inhibited leptin-induced PGD2 secretion, while it failed to alter PGD2-induced LTC4 synthesis. Altogether, sequential activation of CCR3 and then PGD2 receptors by autocrine ligands in response to leptin stimulation of eosinophils culminates with eosinophil activation, characterized here by assembly of lipidic cytoplasmic platforms synthesis and secretion of the pleiotropic lipid mediators, PGD2, and LTC4.
Assuntos
Eosinófilos/imunologia , Leptina/metabolismo , Leucotrieno C4/biossíntese , Receptores CCR3/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Células Cultivadas , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/metabolismo , Eosinófilos/citologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Humanos , Hidantoínas/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Leptina/imunologia , Leucotrieno C4/imunologia , Gotículas Lipídicas/imunologia , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piperidinas/farmacologia , Cultura Primária de Células , Prostaglandina D2/metabolismo , Receptores CCR3/antagonistas & inibidores , Receptores CCR3/imunologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismoRESUMO
The release of damage-associated molecular patterns, including uridine triphosphate (UTP) and adenosine triphosphate (ATP) to the extracellular milieu is a key component of innate immune response to infection. Previously, we showed that macrophage infection by the protozoan parasite Leishmania amazonensis-the etiological agent of cutaneous leishmaniasis-can be controlled by ATP- and UTP-mediated activation of P2Y and P2X7 receptors (activated by UTP/ATP and ATP, respectively), which provided comparable immune responses against the parasite. Interestingly, in context of Leishmania amazonensis infection, UTP/P2Y triggered apoptosis, reactive oxygen species, and oxide nitric (NO) production, which are characteristic of P2X7 receptor activation. Here, we examined a possible "cross-talk" between P2Y2 and P2X7 receptors, and the requirement for pannexin-1 (PANX-1) in the control of L. amazonensis infection in mouse peritoneal macrophages and in vivo. UTP treatment reduced L. amazonensis parasite load, induced extracellular ATP release [which was pannexin-1 (PANX-1) dependent], and triggered leukotriene B4 (LTB4) production in macrophages. UTP-induced parasite control was blocked by pharmacological antagonism of P2Y2 or P2X7 receptors and was absent in macrophages lacking P2X7 or PANX-1. In addition, ATP release induced by UTP was also inhibited by PANX-1 blocker carbenoxolone, and partially reversed by inhibitors of vesicle traffic and actin cytoskeleton dynamics. In vivo, UTP treatment reduced footpad and popliteal lymph node parasite load, and the lesion in wild-type (WT) mice; fact not observed in P2X7-/- mice. Our data reveal that P2Y2 and P2X7 receptors cooperate to trigger potent innate immune responses against L. amazonensis infection.
RESUMO
TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO-/- mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Flavonoides/farmacologia , Immunoblotting , Leucotrienos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fagocitose/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ratos , Ratos Wistar , Ovinos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Assuntos
Dinoprostona/metabolismo , Leishmania/fisiologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leucotrieno B4/metabolismo , Receptor Cross-Talk , Receptores Purinérgicos/metabolismo , Adenosina , Trifosfato de Adenosina , Animais , Humanos , Evasão da Resposta Imune , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos/metabolismo , Camundongos , Neutrófilos/metabolismoRESUMO
Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.
Assuntos
Receptores CCR4/imunologia , Sepse/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Deleção de Genes , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/imunologia , Receptores CCR4/genética , Sepse/genética , Sepse/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Túbulos Renais Proximais/patologia , Proteinúria/complicações , Proteinúria/metabolismo , Albumina Sérica/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Bovinos , Linhagem Celular , Modelos Animais de Doenças , Deleção de Genes , Nefropatias/genética , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Proteinúria/genética , SuínosRESUMO
When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.
Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Lipoxinas/farmacologia , Proteínas Ativadoras de 5-Lipoxigenase/deficiência , Proteínas Ativadoras de 5-Lipoxigenase/genética , Fatores Etários , Animais , Ansiolíticos/metabolismo , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Araquidonato 5-Lipoxigenase/deficiência , Araquidonato 5-Lipoxigenase/genética , Ácidos Araquidônicos/farmacologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Indóis/farmacologia , Injeções Intraperitoneais , Injeções Intraventriculares , Lipoxinas/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alcamidas Poli-Insaturadas/farmacologiaRESUMO
Lipid mediators derived from 5-lipoxygenase (5-LO) metabolism can activate both pro- and anti-inflammatory pathways, but their role in wound healing remains largely unexplored. In this study we show that 5-LO knockout (5-LO(-/-)) mice exhibited faster wound healing than wild-type (WT) animals, and exhibited upregulation of heme oxygenase-1 (HO-1). Furthermore, HO-1 inhibition in 5-LO(-/-) mice abolished the beneficial effect observed. Despite the fact that 5-LO(-/-) mice exhibited faster healing, in in vitro assays both migration and proliferation of human dermal fibroblasts (HDFs) were inhibited by the 5-LO pharmacologic inhibitor AA861. No changes were observed in the expression of fibronectin, transforming growth factor (I and III), and α-smooth muscle actin (α-SMA). Interestingly, AA861 treatment significantly decreased ROS formation by stimulated fibroblasts. Similar to 5-LO(-/-) mice, induction of HO-1, but not superoxide dismutase-2 (SOD-2), was also observed in response to 5-LO (AA861) or 5-LO activating protein (MK886) inhibitors. HO-1 induction was independent of nuclear factor (erythroid derived-2) like2 (Nrf-2), cyclooxygenase 2 (COX-2) products, or lipoxin action. Taken together, our results show that 5-LO disruption improves wound healing and alters fibroblast function by an antioxidant mechanism based on HO-1 induction. Overexpression of HO-1 in wounds may facilitate early wound resolution.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Dermatite/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Cicatrização/fisiologia , Adulto , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Dermatite/genética , Dermatite/imunologia , Derme/citologia , Derme/imunologia , Derme/metabolismo , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/metabolismo , Heme Oxigenase-1/imunologia , Humanos , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Estresse Oxidativo/fisiologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. METHODS: 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. RESULTS: The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. CONCLUSION: In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice.
Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Pneumonia/prevenção & controle , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Western Blotting , Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Oxirredução , Pneumonia/genética , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Testes de Função Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genéticaRESUMO
Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM) being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3-30 µM) elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS) and nitric oxide (NO) generation and inducing IL-1ß, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF- κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.