Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 140(2): 143-167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572598

RESUMO

Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.


Assuntos
Doenças Desmielinizantes/patologia , Mitocôndrias/patologia , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Neuroproteção/fisiologia , Animais , Axônios/patologia , Humanos , Camundongos , Biogênese de Organelas
2.
J Anat ; 236(2): 334-350, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670387

RESUMO

The ventricular layer of the spinal cord is remodelled during embryonic development and ultimately forms the ependymal cell lining of the adult central canal, which retains neural stem cell potential. This anatomical transformation involves the process of dorsal collapse; however, accompanying changes in tissue organisation and cell behaviour as well as the precise origin of cells contributing to the central canal are not well understood. Here, we describe sequential localised cell rearrangements which accompany the gradual attrition of the spinal cord ventricular layer during development. This includes local breakdown of the pseudostratified organisation of the dorsal ventricular layer prefiguring dorsal collapse and evidence for a new phenomenon, ventral dissociation, during which the ventral-most floor plate cells separate from a subset that are retained around the central canal. Using cell proliferation markers and cell-cycle reporter mice, we further show that following dorsal collapse, ventricular layer attrition involves an overall reduction in cell proliferation, characterised by an intriguing increase in the percentage of cells in G1/S. In contrast, programmed cell death does not contribute to ventricular layer remodelling. By analysing transcript and protein expression patterns associated with key signalling pathways, we provide evidence for a gradual decline in ventral sonic hedgehog activity and an accompanying ventral expansion of initial dorsal bone morphogenetic protein signalling, which comes to dominate the forming the central canal lining. This study identifies multiple steps that may contribute to spinal cord ventricular layer attrition and adds to increasing evidence for the heterogeneous origin of the spinal cord ependymal cell population, which includes cells from the floor plate and the roof plate as well as ventral progenitor domains.


Assuntos
Proliferação de Células/fisiologia , Ventrículos Cerebrais/citologia , Medula Espinal/citologia , Animais , Apoptose/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/fisiologia , Ventrículos Cerebrais/metabolismo , Epêndima/citologia , Epêndima/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...