Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Target Oncol ; 14(5): 563-575, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31429028

RESUMO

BACKGROUND: Aberrant Myc expression plays a critical role in various tumors, including non-Hodgkin lymphoma (NHL). Myc-positive lymphoma is clinically aggressive, more resistant to chemotherapy, and associated with high mortality. OBJECTIVE: The current study aimed to show inhibition of aurora A kinase (AURKA) may overcome resistance to chemotherapy and improve outcomes in Myc-overexpressing lymphoma. METHODS: Myc-overexpressing lymphoma cell lines were evaluated by trypan blue, annexin V/propidium iodide staining, and western blotting for cytotoxicity, cell cycle, apoptosis, and Myc-associated protein expression, respectively, in the presence of cyclophosphamide with or without MLN8237, an AURKA inhibitor. Immunofluorescence for apoptosis-inducing factor (AIF) and acridine orange staining were used to analyze levels of autophagy. EµMyc genetically modified mouse model and xenograft models bearing Myc-overexpressing lymphoma cells were used to determine the efficacy of cyclophosphamide, MLN8237, or the combination in chemosensitive and chemoresistant tumors. RESULTS: In our in vitro experiments using chemoresistant lymphoma cells, MLN8237 and cyclophosphamide showed synergistic effects. Mice bearing lymphoma xenograft had rapid disease progression with median survival of ~ 35 days when treated with cyclophosphamide alone. In contrast, the combination of cyclophosphamide and MLN8237 induced complete tumor regression in all mice, which led to improvement in survival compared with the single agent control (p = 0.022). Kinome analysis of tumors treated with MLN8237 showed global suppression of various kinases. CONCLUSION: Our data demonstrate that AURKA inhibition induces synthetic lethality and overcomes chemoresistance in Myc-overexpressing lymphoma. The combination of MLN8237 and conventional chemotherapy showed promising safety and anti-tumor activities in preclinical models of Myc-positive NHL.


Assuntos
Antineoplásicos/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Ciclofosfamida/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Pirimidinas/farmacologia , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Linfoma não Hodgkin/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Mutação/genética
2.
J Proteome Res ; 18(1): 522-534, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30540191

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, and at least one-third of its patients relapse after treatment with the current chemotherapy regimen, R-CHOP. By gene-expression profiling, patients with DLBCL can be categorized into two clinically relevant subtypes: activated B-cell (ABC) and germinal center B-cell (GCB) DLBCL. Patients with the ABC subtype have a worse prognosis than those with GCB, and the subtype is defined by chronic, over-active signaling through the B-cell receptor and NF-κB pathways. We examined the effects of the Src family kinase (SFK) inhibitor dasatinib in a panel of ABC and GCB DLBCL cell lines and found that the former are much more sensitive to dasatinib than the latter. However, using multiplexed inhibitor bead coupled to mass spectrometry (MIB/MS) kinome profiling and Western blot analysis, we found that both subtypes display inhibition of the SFKs in response to dasatinib after both short- and long-term treatment. The MIB/MS analyses revealed that several cell-cycle kinases, including CDK4, CDK6, and the Aurora kinases, are down-regulated by dasatinib treatment in the ABC, but not in the GCB, subtype. The present findings have potential implications for the clinical use of dasatinib for the treatment of ABC DLBCL, either alone or in combination with other agents.


Assuntos
Dasatinibe/farmacologia , Centro Germinativo/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linfócitos B/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Centro Germinativo/patologia , Humanos , Linfoma Difuso de Grandes Células B/classificação
3.
J Cell Biochem ; 118(11): 3595-3606, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464261

RESUMO

The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Neoplasias/análise , Neoplasias/enzimologia , Proteínas Quinases/análise , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...