Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432267

RESUMO

A novel endo-1,4-ß-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized ß-xylosidase AmßXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmßXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmßXyl among the most promising biocatalysts for the saccharification of agricultural waste.


Assuntos
Alicyclobacillus , Endo-1,4-beta-Xilanases , Polissacarídeos , Xilanos , Xilosidases , Endo-1,4-beta-Xilanases/química , Xilanos/química , Hidrólise , Concentração de Íons de Hidrogênio
2.
Biotechnol Adv ; 72: 108321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38336187

RESUMO

Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Oxirredução , Biocatálise , Catálise
3.
ACS Catal ; 13(7): 4454-4467, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066045

RESUMO

Copper-dependent lytic polysaccharide monooxygenases (LPMOs) classified in Auxiliary Activity (AA) families are considered indispensable as synergistic partners for cellulolytic enzymes to saccharify recalcitrant lignocellulosic plant biomass. In this study, we characterized two fungal oxidoreductases from the new AA16 family. We found that MtAA16A from Myceliophthora thermophila and AnAA16A from Aspergillus nidulans did not catalyze the oxidative cleavage of oligo- and polysaccharides. Indeed, the MtAA16A crystal structure showed a fairly LPMO-typical histidine brace active site, but the cellulose-acting LPMO-typical flat aromatic surface parallel to the histidine brace region was lacking. Further, we showed that both AA16 proteins are able to oxidize low-molecular-weight reductants to produce H2O2. The oxidase activity of the AA16s substantially boosted cellulose degradation by four AA9 LPMOs from M. thermophila (MtLPMO9s) but not by three AA9 LPMOs from Neurospora crassa (NcLPMO9s). The interplay with MtLPMO9s is explained by the H2O2-producing capability of the AA16s, which, in the presence of cellulose, allows the MtLPMO9s to optimally drive their peroxygenase activity. Replacement of MtAA16A by glucose oxidase (AnGOX) with the same H2O2-producing activity could only achieve less than 50% of the boosting effect achieved by MtAA16A, and earlier MtLPMO9B inactivation (6 h) was observed. To explain these results, we hypothesized that the delivery of AA16-produced H2O2 to the MtLPMO9s is facilitated by protein-protein interaction. Our findings provide new insights into the functions of copper-dependent enzymes and contribute to a further understanding of the interplay of oxidative enzymes within fungal systems to degrade lignocellulose.

4.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35813357

RESUMO

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

5.
Physiol Plant ; 174(4): e13737, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717612

RESUMO

Global climate change, especially heatwaves and aridity, is a major threat to agricultural production and food security. This requires common efforts from the scientific community to find effective solutions to better understand and protect the plant's vulnerabilities to high temperatures. The current study demonstrates the potential of cellooligosaccharides (COS), which are native and oxidized signaling molecules released by lytic polysaccharide monooxygenases (LPMO) enzymes during cell wall degradation by microbial pathogens. The extracellular perception of COS leads to the activation of damage-triggered immunity, often protecting the plant against biotic stress. However, how these signaling molecules affect abiotic stress tolerance is poorly understood. Here, we show that native COS and oxidized COS (oxiCOS) perception increase the transcript levels of several HEAT SHOCK FACTORS (HSFs) and HEAT SHOCK PROTEINS (HSPs) genes in Arabidopsis plants. However, only oxiCOS treatment triggers ethylene priming and increases thermotolerance. Furthermore, the function of the transcription factor HSFA2 is required for these processes. Altogether, our results indicate that the perception of Damage-Associated Molecular Patterns (DAMPs) may improve tolerance to adverse abiotic conditions, like exposure to high temperatures.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oligossacarídeos/metabolismo , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Temperatura Alta , Oxirredução , Proteínas de Plantas/metabolismo , Termotolerância/genética
6.
Bioresour Technol ; 347: 126375, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801726

RESUMO

Lytic Polysaccharide MonoOxygenases display great variability towards cellulose ultrastructure while performing oxidative functionalization of the polymers. Aiming at employing AA9-LPMOs for isolation of cellulose nano-crystals (CNCs), the ratio between functionalization/crystalline degradation became a crucial parameter. Here are reported the constraints posed by the substrate ultrastructure on the activity of seven different AA9 LPMOs representative of various regioselectivity and substrate affinity: TtAA9E, TaAA9A, PcAA9D, MtAA9A, MtAA9D, MtAA9I-CBM and MtAA9J. The substrate crystallinity and dry matter loading greatly affected the seven AA9s in an enzyme-specific manner, impacting their efficiency for CNCs functionalization purposes. X-ray diffraction pattern analyses were used to assess the cracking efficacy of the enzymatic treatment to de-crystallize CNCs, revealing that those AA9s with minor efficiency in releasing oligosaccharides resulted instead the most disruptive towards the crystal lattice and in reducing the particle sizes. These non-catalytic effects were found comparable with the one caused by the expansin BsEXLX1 enzyme.


Assuntos
Celulose , Oxigenases de Função Mista , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Polímeros , Polissacarídeos
7.
Fungal Biol Biotechnol ; 8(1): 16, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794517

RESUMO

Concrete is the most used construction material worldwide due to its abundant availability and inherent ease of manufacturing and application. However, the material bears several drawbacks such as the high susceptibility for crack formation, leading to reinforcement corrosion and structural degradation. Extensive research has therefore been performed on the use of microorganisms for biologically mediated self-healing of concrete by means of CaCO3 precipitation. Recently, filamentous fungi have been recognized as high-potential microorganisms for this application as their hyphae grow in an interwoven three-dimensional network which serves as nucleation site for CaCO3 precipitation to heal the crack. This potential is corroborated by the current state of the art on fungi-mediated self-healing concrete, which is not yet extensive but valuable to direct further research. In this review, we aim to broaden the perspectives on the use of fungi for concrete self-healing applications by first summarizing the major progress made in the field of microbial self-healing of concrete and then discussing pioneering work that has been done with fungi. Starting from insights and hypotheses on the types and principles of biomineralization that occur during microbial self-healing, novel potentially promising candidate species are proposed based on their abilities to promote CaCO3 formation or to survive in extreme conditions that are relevant for concrete. Additionally, an overview will be provided on the challenges, knowledge gaps and future perspectives in the field of fungi-mediated self-healing concrete.

8.
Commun Biol ; 4(1): 727, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117349

RESUMO

Lytic Polysaccharide Monooxygenases (LPMOs) are powerful redox enzymes able to oxidatively cleave recalcitrant polysaccharides. Widely conserved across biological kingdoms, LPMOs of the AA9 family are deployed by phytopathogens to deconstruct cellulose polymers. In response, plants have evolved sophisticated mechanisms to sense cell wall damage and thus self-triggering Damage Triggered Immunity responses. Here, we show that Arabidopsis plants exposed to LPMO products triggered the innate immunity ultimately leading to increased resistance to the necrotrophic fungus Botrytis cinerea. We demonstrated that plants undergo a deep transcriptional reprogramming upon elicitation with AA9 derived cellulose- or cello-oligosaccharides (AA9_COS). To decipher the specific effects of native and oxidized LPMO-generated AA9_COS, a pairwise comparison with cellobiose, the smallest non-oxidized unit constituting cellulose, is presented. Moreover, we identified two leucine-rich repeat receptor-like kinases, namely STRESS INDUCED FACTOR 2 and 4, playing a crucial role in signaling the AA9_COS-dependent responses such as camalexin production. Furthermore, increased levels of ethylene, jasmonic and salicylic acid hormones, along with deposition of callose in the cell wall was observed. Collectively, our data reveal that LPMOs might play a crucial role in plant-pathogen interactions.


Assuntos
Arabidopsis/imunologia , Botrytis/imunologia , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Oligossacarídeos/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/fisiologia , Oligossacarídeos/fisiologia , Doenças das Plantas/microbiologia , Sordariales/metabolismo
9.
J Inorg Biochem ; 216: 111316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421883

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.


Assuntos
Cobre/química , Proteínas de Insetos/química , Isópteros/enzimologia , Oxigenases de Função Mista/química , Modelos Moleculares , Animais , Cobre/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isópteros/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
10.
Enzyme Microb Technol ; 143: 109704, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33375972

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are industrially important enzymes able to enhance the enzymatic lignocellulose saccharification in synergism with classical glycoside hydrolases. Fungal LPMOs have been classified as AA9, AA11, and AA13-16 families showing a diverse specificity for substrates such as soluble and insoluble beta-glucans, chitin, starch, and xylan, besides cellulose. These enzymes are still not fully characterized, and for example this is testify by their mechanism of oxidation regularly reviewed multiple times in the last decade. Noteworthy is that despite the extremely large abundance in the entire Tree of Life, our structural and functional knowledge is based on a restricted pool of LPMO, and probably one of the main reason reside in the challenging posed by their heterologous expression. Notably, the lack of a simple cloning protocol that could be universally applied to LPMO, hinders the conversion of the ever-increasing available genomic information to actual new enzymes. Here, we provide an easy and fast protocol for cloning, expression, and purification of active LPMOs in the following architecture: natural signal peptide, LPMO enzyme, TEV protease site, and His6-Tag. For this purpose, a commercial methanol inducible expression vector was initially modified to allow the LPMO expression containing the above characteristics. Gibson assembly, a one-step isothermal DNA assembly, was adopted for the direct assembly of intron-less or intron-containing genes and the modified expression vector. Moreover, His6-tagged LPMO constructs can be submitted to TEV proteolysis for removal of the questionable C-terminal His6-Tag, obtaining a close-to-native form of LPMO. We successfully applied this method to clone, express, and purify six LPMOs from AA9 family with different regioselectivities. The proposed protocol, provided as step-by-step, could be virtually applied in many laboratories thanks to the choice of popular and commons materials.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Clonagem Molecular , Proteínas Fúngicas/genética , Humanos , Oxigenases de Função Mista/genética , Polissacarídeos , Xilanos
11.
J Exp Bot ; 72(4): 1020-1033, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33188434

RESUMO

Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Expressão Gênica , Genes de Plantas , Doenças das Plantas/genética , Plantas/genética
12.
Biomedicines ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207735

RESUMO

Organochlorine pesticides (OCPs) belong to a heterogeneous class of organic compounds blacklisted by the Stockholm Convention in 2009 due to their harmful impact on human health. Among OCPs, ß-hexachlorocyclohexane (ß-HCH) is one of the most widespread and, at the same time, poorly studied environmental contaminant. Due to its physicochemical properties, ß-HCH is the most hazardous of all HCH isomers; therefore, clarifying the mechanisms underlying its molecular action could provide further elements to draw the biochemical profile of this OCP. For this purpose, LNCaP and HepG2 cell lines were used as models and were subjected to immunoblot, immunofluorescence, and RT-qPCR analysis to follow the expression and mRNA levels, together with the distribution, of key biomolecules involved in the intracellular responses to ß-HCH. In parallel, variations in redox homeostasis and cellular bioenergetic profile were monitored to have a complete overview of ß-HCH effects. Obtained results strongly support the hypothesis that ß-HCH could be an endocrine disrupting chemical as well as an activator of AhR signaling, promoting the establishment of an oxidative stress condition and a cellular metabolic shift toward aerobic glycolysis. In this altered context, ß-HCH can also induce DNA damage through H2AX phosphorylation, demonstrating its multifaceted mechanisms of action.

13.
J Tissue Eng Regen Med ; 14(3): 539-555, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845514

RESUMO

A comprehensive understanding of the human body endogenous microbiota is essential for acquiring an insight into the involvement of microbiota in tissue healing and regeneration process in order to enable development of biomaterials with a better integration with human body environment. Biomaterials used for biomedical applications are normally germ-free, and the human body as the host of the biomaterials is not germ-free. The complexity and role of the body microbiota in tissue healing/regeneration have been underestimated historically. Traditionally, studies aiming at the development of novel biomaterials had focused on the effects of environment within the target tissue, neglecting the signals generated from the microbiota and their impact on tissue regeneration. The significance of the human body microbiota in relation to metabolism, immune system, and consequently tissue regeneration has been recently realised and is a growing research field. This review summarises recent findings on the role of microbiota and mechanisms involved in tissue healing and regeneration, in particular skin, liver, bone, and nervous system regrowth and regeneration highlighting the potential new roles of microbiota for development of a new generation of biomaterials.


Assuntos
Microbiota , Regeneração , Animais , Osso e Ossos/fisiologia , Humanos , Fígado/fisiologia , Sistema Nervoso/metabolismo , Sistema Nervoso/microbiologia , Especificidade de Órgãos , Pele/metabolismo , Pele/microbiologia , Fenômenos Fisiológicos da Pele
14.
Methods Mol Biol ; 1796: 247-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856058

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes that oxidize the most recalcitrant polysaccharides and require extracellular electron donors. The role of electron donation to redox enzymes is pivotal since a nonefficient electron transfer might result in partial activity or reduced kinetics. In this protocol we show the effect of using excited photosynthetic pigments combined with reducing agents as efficient electron donors for monooxygenases. The light-induced electron transfer can enhance the oxidation ability of LPMOs up to ten times.


Assuntos
Bioquímica/métodos , Luz , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Transporte de Elétrons/efeitos da radiação , Oxirredução , Padrões de Referência
15.
Biotechnol Biofuels ; 11: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29371886

RESUMO

BACKGROUND: The discovery of lignin as activator for the redox enzyme lytic polysaccharide monooxygenases (LPMOs) for the oxidation of cell-wall polysaccharides opens a new scenario for investigation of the interplay between different lignocellulose-degrading enzymes. The lignin-active enzymes in one hand, and the carbohydrate active in the other, are linked through a variety of electrons carrier molecules either derived from lignin or enzymatically transferred. Likewise, in nature, many lignocellulose-degrading organisms are expressing those enzymes simultaneously, and we wanted to test if a major commercial available lignin oxidase enzyme, i.e., laccase could benefit and synergize the activity of the LPMOs by depolymerizing the insoluble lignin. RESULTS: In this work, two fungal laccases together with a mediator (ABTS) were used to isolate low-molecular-weight lignin from lignocellulosic biomass. The isolated lignins were used as electron donors for activation of LPMOs. A direct correlation between the low-molecular-weight lignin isolated with laccases and an increased activity of a cellulolytic cocktail containing LPMO was found when pure cellulose was hydrolyzed. We then tried to implement existing commercial cellulases cocktail with laccase enzymes, but under the conditions tested, the co-incubation of laccases with LPMOs showed a substrate competition towards oxygen inhibiting the LPMO. In addition, we found that laccase treatment may cause other modifications to pure cellulose, rendering the material more recalcitrant for enzymatic saccharification. CONCLUSIONS: Laccase-mediated system was able to depolymerize lignin from pre-treated and native sugarcane bagasse and wheat straw, and the released phenolic molecules were able to donate electrons to LPMO enzymes boosting the overall enzymatic hydrolysis of cellulose. Likewise, other poly-phenol oxidase, we might have just started showing possible pros or cons in applying several oxidase enzymes for a simultaneous degradation of cellulose and lignin, and we found that the competition towards oxygen and their different consumption rates must be taken into account for any possible co-application.

16.
Sci Rep ; 5: 18561, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686263

RESUMO

Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert.


Assuntos
Celulose Oxidada/química , Lignina/química , Oxirredução , Biodegradação Ambiental , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulose Oxidada/metabolismo , Cobre/química , Transporte de Elétrons , Elétrons
17.
Biotechnol Biofuels ; 8: 52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25829946

RESUMO

BACKGROUND: Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non-productive cellulase adsorption to the substrate, and increase the desorption of enzymes from the substrate. Here, using lignin-free model substrates, we propose that PEG also alters the solvent properties, for example, water, leading the cellulases to increase hydrolysis yields. RESULTS: The effect of PEG differs for the individual cellulases. During hydrolysis of Avicel and PASC with a processive monocomponent exo-cellulase cellobiohydrolase (CBH) I, the presence of PEG leads to an increase in the final glucose concentration, while PEG caused no change in glucose production with a non-processive endoglucanase (EG). Also, no effect of PEG was seen on the activity of ß-glucosidases. While PEG has a small effect on the thermostability of both cellulases, only the activity of CBH I increases with PEG. Using commercial enzyme mixtures, the hydrolysis yields increased with the addition of PEG. In parallel, we observed that the relaxation time of the hydrolysis liquid phase, as measured by LF-NMR, directly correlated with the final glucose yield. PEG was able to boost the glucose production even in highly concentrated solutions of up to 150 g/L of glucose. CONCLUSIONS: The hydrolysis boosting effect of PEG appears to be specific for CBH I. The mechanism could be due to an increase in the apparent activity of the enzyme on the substrate surface. The addition of PEG increases the relaxation time of the liquid-phase water, which from the data presented points towards a mechanism related to PEG-water interactions rather than PEG-protein or PEG-substrate interactions.

18.
Bioresour Technol ; 173: 148-158, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25299491

RESUMO

Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.


Assuntos
Reatores Biológicos/microbiologia , Meio Ambiente , Etanol/isolamento & purificação , Etanol/metabolismo , Hipergravidade , Componentes Aéreos da Planta/microbiologia , Triticum/microbiologia , Biodegradação Ambiental , Conservação de Recursos Energéticos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
19.
J Agric Food Chem ; 62(17): 3800-5, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24724847

RESUMO

Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosaccharides such as mannose and galactose (stereoisomers of glucose) decrease glucose yields as well. NMR relaxometry measurements showed direct correlations between the initial T2 of the liquid phase in which hydrolysis takes place and the total glucose production during cellulose hydrolysis, indicating that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The ß-glucosidases were shown to be less sensitive to high monosaccharide concentrations except glucose. Protein adsorption studies showed that this inhibition effect was most likely due to catalytic, and not binding, inhibition of the cellulases.


Assuntos
Celulase/antagonistas & inibidores , Celulase/química , Inibidores Enzimáticos/química , Monossacarídeos/química , Celulose/química , Glucose/química , Cinética
20.
Biotechnol Biofuels ; 7: 64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739806

RESUMO

BACKGROUND: Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. RESULTS: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that pH was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L(-1), respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L(-1) day(-1)) even in the absence of any other nutrient additions to the fermentation medium. CONCLUSIONS: Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used for Saccharomyces fermentations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...